U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

Second Progress Report On Chronostratigraphic And Paleoclimatic Studies, Middle Mississippi River Valley, Eastern Arkansas, Western Tennessee, And Northwestern Mississippi

by

H.W. Markewich, editor¹

Open-File Report 94 - 208

Prepared in cooperation with the U.S. Department of Agriculture Soil Conservation Service

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the North American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Atlanta, Georgia

1994

Contributing Authors (listed alphabetically):

- P.B. Maat, U.S. Geological Survey Box 25046, Denver Federal Center, MS 963, Denver, Colorado 80225-0046
- H.W. Markewich, U.S. Geological Survey, Peachtree Business Center, 3039 Amwiler Road, Atlanta, Georgia 30360-2824
- J.P. McGeehin, U.S. Geological Survey, National Center, MS 971, Reston, Virginia 22092
- H.T. Millard, Jr., U.S. Geological Survey, Box 25046, Denver Federal Center, MS 974, Denver, Colorado 80225-0046
- M.J. Pavich, U.S. Geological Survey, National Center, MS 908, Reston, Virginia 22092
- F. J. Rich, Georgia Southern University, Department of Geology and Geography, Landrum Box 8149, Statesboro, Georgia 30460
- Meyer Rubin, U.S. Geological Survey, National Center, MS 971, Reston, Virginia 22092
- E.M. Rutledge, Agronomy Department, University of Arkansas, Fayetteville, Arkansas 72701
- S.G. Van Valkenburg, U.S. Geological Survey, National Center, MS 926, Reston, Virginia 22092
- L.B. Ward, USDA, Soil Conservation Service, Federal Building, 700 W. Capitol Ave., Little Rock, Arkansas 72201
- D.A. Wysocki, USDA, Soil Conservation Service, Federal Building, 100 Centennial Mall North, Lincoln, Nebraska 68508-3866

28

CONTENTS

Introduction 4	
Chronostratigraphic Data 4	
Carbon 14 4	
Beryllium-10 (Be-10) 6	
Thermoluminesence (TL) 6	
Phillips Bayou 6	
Mineralogy 7	
Chemistry 8	
Palynological Data 8	
Old River Section 9	
Description 10	
References Cited 14	
TICY ID TO	
FIGURES	
1. Map of Lower Mississippi River Valley 15	
2. Map of study area in Arkansas, Tennessee, and Mississippi 16	
3. Stratigraphic column of loess sequence at Phillips Bayou locality 17 and 18	
4. Plot of Be-10 data for Yocona River and Phillips Bayou localities 19	
5. Plot of color vs. depth for loss sequence at Phillips Bayou locality 20	
6. Plot of particle size data for loess exposed in Phillips Bayou quarry cut-face 21	
7. Bar graph showing mineralogy of coarse silt fraction for loess exposed in Phillips	
Bayou quarry cut-face 22 8. Plot of particle size data for loess from Helena No. 2 core (located just	
· · · · · · · · · · · · · · · · · · ·	
	24
9. Bar graph showing mineralogy of coarse silt fraction for loess in Helena No. 2 core 10. X-ray diffraction patterns for <0.002 mm fraction from selected depths in	24
Helena No. 1 core (legated at ten of Crowleys Didge near Philling Dayou legality).	25
	23
11. Dithionite-citrate extractable Fe vs. depth for (a) Helena No. 2 core and (b) Phillips Bayou quarry cut-face 26	
(a) = ==================================	
12. Plot of NH ₄ OAc extractable Mg and Ca vs. depth for Helena No. 2 core and Phillips Bayou quarry cut-face 27	
	28
14. Plot of NH ₄ OAc extractable Na and K vs. depth for Helena No. 2 core 29	40
17. Flot of 1414076 extractable 14a and K vs. depui for Holena 140. 2 cole 29	

TABLES

- TL and Be-10 inventory ages for selected depths in Phillips Bayou loess section
 Laboratory data for sediments in Helena No. 2 core 31 30
- 3. Laboratory data for sediments in Phillips Bayou quarry cut-face 40

SECOND PROGRESS REPORT ON CHRONOSTRATIGRAPHIC AND PALEOCLIMATIC STUDIES, MIDDLE MISSISSIPPI RIVER VALLEY, EASTERN ARKANSAS, WESTERN TENNESSEE, AND NORTHWESTERN MISSISSIPPI

INTRODUCTION H.W. Markewich

The U.S. Geological Survey (USGS) in Reston Virginia and Denver, Colorado, the U.S. Department of Agriculture (USDA) Soil Conservation Service (SCS) in Arkansas, Tennessee, and Mississippi, and researchers from the University of Arkansas, and Georgia Southern University are cooperating in lithostratigraphic and the chronostratigraphic studies of Pliocene(?) and Quaternary deposits in the Middle Mississippi River Valley (MMV), that part of the Mississippi River Valley (MRV) between Cape Girardeau, Missouri (near Thebes Gap) and Vicksburg, Mississippi (fig. 1 and 2). These studies have yielded laboratory and field data for loess and Mississippi River alluvium for several localities in northwestern Mississippi, western Tennessee, and eastern Arkansas. Preliminary results from this cooperative effort were published in USGS Open File Report 93-273 (Markewich, 1993). Included were outcrop descriptions and magnetic susceptibility, X-ray diffraction, and age data for localities described and sampled during the first Fiscal Year of the investigations. Open-File Report 93-273 also discusses previous studies of Quaternary deposits in the MMV, the purpose and scope of ongoing investigations, and methods of study and analysis. The reader is referred to that publication for an overview of the objectives and goals of this study. This report includes data for the second year of investigation. It is an update of Open-File Report 93-273.

Localities mentioned in this report on shown on figures 1 and 2. A composite stratigraphic section is shown in figure 3. Stratigraphic names used in this report are those that have been previously assigned by loess stratigraphers who have worked in the area. Reference publications are cited on figure 3. Complete citations are given in the References Cited section. Age and some compositional data are given in the tables. The calculated Be-10 and TL ages are given in Table 1. Plots of the Be-10 inventory values, for selected intervals of loess from the Phillips Bayou and the Yocona River localities, are shown in figure 4. Most data used in figures 5 through 12 are included in Tables 2 and 3. Not all data in Tables 2 and 3 are shown graphically. Table 4 gives the quantification of x-ray diffraction traces for the <0.002 mm fraction of the Peoria Loess on the crest of Crowleys Ridge, topographically above the Phillips Bayou quarry locality (Helena No. 1 core). Traces for some of these intervals are shown in figure 10.

CHRONOSTRATIGRAPHIC DATA

Carbon-14 Meyer Rubin, J.P. McGeehin, and H.W. Markewich

All samples for C-14 analysis were submitted to the U.S. Geological Survey C-14 laboratory in Reston, Virginia. Some samples were analyzed in the Reston laboratory. Others were converted to graphite and submitted to the Lawrence Livermore Center for Atomic Mass Spectrometry. Samples analyzed in Reston are designated by a W number. Samples processed in Reston but run at Lawrence Livermore have WW process numbers. Lawrence Livermore numbers are designated as LLCAMS.

Loess on the highlands.-- Gastropod shells from the basal 2 m of Peoria Loess from the Old River site (35°25'04" N. Lat., 89°58'29" W. Long., Drummonds 1:24,000 quadrangle; fig. 2) have a C-14 age of 21,840±300 yrs B.P. (U.S. Geological Survey C-14 Laboratory, Reston,

VA 22092, Lab. No. W-6484), which is in general agreement with the 25 ka age (amino racemization and electron spin resonance) reported by Mirecki and Skinner (1991) for the same interval, and with the 21 ka C-14 age for gastropod shells near the base of the Peoria Loess at Phillips Bayou (fig. 2), reported in Markewich (1993). Gastropod shells in the basal 2 m of Peoria Loess, exposed in an a quarry in northwestern Mississippi (33°51'57" N. Lat., 90°03'25" W. Long., Cascilla, Mississippi 1:24,000 quadrangle), have a composite C-14 age of 19,290±260 (U.S. Geological Survey C-14 Laboratory, Reston, VA 22092, Lab. No. WW-208, LLCAMS-9303), somewhat younger than C-14 ages for gastropods from the same stratigraphic interval at the Phillips Bayou (fig. 3) and Old River localities. No age data are available for the Farmdale paleosol in this area of Mississippi.

Terrace alluvium and silt caps.-- Well preserved, unabraided gastropod shells from a cuttings sample, 11.5 m depth in silt (loess?), from a well near Lexa, Arkansas (34°32'56" N. Lat., 90°50'37" W. Long.; 56.6 m surface altitude) (fig. 2) were submitted for C-14 age determination. The C-14 age for these shells is 25,720±700 yrs B.P (U.S. Geological Survey Radiocarbon Laboratory, Reston, VA 22092, Lab. No. W-6485). An C-14 age determination of 25,870±780 yr (U.S. Geological Survey Radiocarbon Laboratory, Reston, VA 22092, Lab. No. WW-137, LLCAMS - 6321) was obtained for wood from cutting samples at 23-23.5 m depth in the same well. The wood fragments were contained within a sequence of medium to coarse quartz sand with high lithic and iron-aluminosilicate (e.g., hornblende) contents. The similarity of ages for the wood and the shells, that were separated by 13 m of alluvium, suggests that (1) sedimentation was very rapid around 25 ka; and (2) shortly after this period of rapid sedimentation there was a very rapid decrease in discharge and sediment load in this part of the Mississippi River Valley. The Lexa site is located on a late Wisconsinan terrace of Saucier and Snead (1989). The 10-13 m of silt that cover its surface could be the Peoria Loess. If so, then a 25 ka age for the silt is in agreement with the age of the basal Peoria on Crowleys Ridge and the high bluffs east of the present Mississippi River (e.g., Phillips Bayou, Old River, Hornbeak, and Troy localities; fig. 2). The rapid change in discharge and sediment load of the Mississippi River, and (or) larger tributaries, was apparently coincident with the sharp climate change recorded by the Roxana Silt - Peoria Loess contact as exposed on Crowleys Ridge and on the high bluffs east of the present Mississippi River.

A C-14 age was also obtained for wood fragments in well cuttings from a locality near Tillar, Arkansas (33°41'40" N. Lat., 91°29'06" W. Long.; McGeehee North 1:24,000 quadrangle; 47 m surface altitude). The wood was from 11.6 m depth (given in error as 14 m depth in Markewich, 1993, p. 6; error in surface altitude of well) a sand and gravel sequence of predominantly quartz with high iron-aluminosilicate and lithic contents. The C-14 age determination is 3,890±80 (U.S. Geological Survey Radiocarbon Laboratory, Reston, VA 22092, Lab. No. WW-160, LLCAMS-7581). The gravels are from an paleochannel near a former junction of the Arkansas and Mississippi Rivers.

The near 4 ka age for sediments at a depth of 11.6 m near Tillar, Arkansas is in agreement with the 4,600±95 yrs B.P. C-14 age (U.S. Geological Survey Radiocarbon Laboratory, Reston, VA 22092, Lab. No. W-6483) for wood at 11.4 m depth in core from near Turrell, Arkansas in the Wapanocca National Wildlife Refuge (35°21'43" N. Lat., 90°12' 51" W. Long.; Jericho, Arkansas 1:24,000 quadrangle; 68.6 m surface altitude; total depth 43.8 m, base of core still in alluvium) (fig. 2). Two graphitized samples of muck from 9.6 m depth in the same core yielded a ages of 3010±70 and 3030±70 yrs B.P. (U.S. Geological Survey Radiocarbon Laboratory, Reston, VA 22092, Lab. No. WW-143, LLCAMS-6333 and 6332). The 3,000 ka C-14 age indicates that the upper part of the alluvium at this locality is Holocene. A >37 ka C-14 age (U.S. Geological Survey Radiocarbon Laboratory, Reston, VA 22092, Lab. No. W-6479) was obtained for wood at 15.8 m depth in the same core. This >37 ka age suggests either that the

greater part of the alluvial sequence is early Wisconsinan or older, or that older sediment and detritus are components of the Holocene alluvium.

Beryllium-10 (Be-10) M.J. Pavich and H.W. Markewich

Be-10 isotopic analysis has been used as a method of dating loesses in the MMV. Ages estimated from Be-10 inventory data for Phillips Bayou are shown on figure 3 and in Table 1. Because of uncertainty about the concentration of "inherited" Be-10 in the Mississippi River Valley loess, limits of error have not been determined for Be-10 values. However, as calculated, they compare favorably with TL data (discussed in next section). A general summary of chronostratigraphy for the Loveland and younger loesses is as follows. The Loveland Loess corresponds to or correlates with all or part of oxygen isotope stage 6. The Sangamon paleosol developed during all of oxygen isotope stage 5. The Roxana Silt occupies the time interval of stages 4 and 3. The Peoria was deposited during stage 2. (stages based upon Martinson and others, 1987).

Figure 4 compares the Be-10 inventory values for loesses and paleosols exposed at Phillips Bayou with those exposed at the Yocona River locality (sample localities shown on fig. 2). The Be-10 inventory data are in agreement with the pedostratigraphy of both sites (Phillips Bayou description in Markewich, 1993; Yocona River description not yet published). For example, the Roxana Silt at Phillips Bayou is about 6 m thick; at Yocona from 1-1.5 m. The Roxana Silt at the Yocona River locality does not have the two readily identifiable paleosols (the Farmdale and the unnamed basal paleosol) that can be seen at Phillips Bayou. At the Yocona River locality, the Roxana Silt is pedogenically altered throughout. The one paleosol (Farmdale?) extends from the paleo surface of the Roxana Silt into the underlying Sangamon paleosol that marks the paleo surface of the Loveland Loess. These profile differences are readily expressed in the Be-10 values plotted on parts (a) and (c) of figure 4.

Part (b) of figure 4 shows the Be-10 inventory values for the Plłocene(?) to Pleistocene age alluvial sand and gravel (commonly referred to as the Citronelle(?) and (or) Lafayette(?) Formation), at the Yocona River site. The values suggest that the paleo surface of this unit was subaerially exposed for a period no longer than 150 kyr. If the Be-10 inventory estimate of exposure time is correct, and there is no major pre-paleosol erosion surface, then the alluvial sand and gravel at the Yocona River locality is Pleistocene in age.

Thermoluminescence (TL) H.T. Millard, Jr. and P.B. Maat, and H.W. Markewich

TL ages have been determined for a three of the four loesses exposed in the Phillips Bayou cut-face (Table 1 and fig. 3). Estimated Be-10 ages are included for comparison. The Be-10 ages are systematically older than TL ages. However, the age differences do not alter the stratigraphic placement of loess units.

A discussion of the methods, assumptions, and interpretation of TL data are to be published in a U.S. Geological Survey Open-File Report, which is in preparation.

PHILLIPS BAYOU

H.W. Markewich, D.A. Wysocki, E.M. Rutledge, and L. B. Ward

A composite stratigraphic profile for the Phillips Bayou section is given in fig. 3. Stratigraphic data (descriptive and compositional) were used to compile the section in fig. 3 are from three sources. Near vertical, 20-30 m high exposures form the back wall of inactive gravel pits located along a 0.8 km stretch of road at the base of Crowleys Ridge near Phillips Bayou,

Arkansas. One of these exposures was described and sampled in detail. The description is included in Markewich (1993). Compositional and age data from the exposure are included (Tables 1 and 3, figs. 3-7, 11, 12, and 14). The Helena No. 1 core is a 20 m deep Giddings Rig core from the crest of Crowleys Ridge, upslope and west of the Phillips Bayou quarries. Some mineralogical data for the <0.002 mm fraction of this core are plotted in fig. 10 and shown in Table 4. The Helena No. 2 core is actually several nested cores (4 cores positioned within 0.6 m of each other) located directly upslope from the Phillips Bayou quarry cut-face that was described in Markewich (1993). The deepest individual core was 22 m. The other three were <7 m deep and were obtained in order to have adequate sample for a field description and laboratory analyses of the Holocene surface soil developed in the Peoria Loess. Data are given in Table 2 and on plotted on figs. 4, 8, 9, and 11-13.

Several observations should be made concerning the stratigraphic column shown in fig. 3.

- 1. The youngest two loesses have been lithostratigraphically and chronostratigraphically correlated with the Peoria Loess and the upper part of the Roxana Silt of Illinois (Wilman and Fry, 1970). As a tentative correlation with the marine isotopic record (Martinson and others, 1987), the Roxana Silt corresponds to oxygen isotope stages 4 and 3, the Peoria Loess to stage 2.
- 2. The Sangamon paleosol is the paleo surface soil of, and is developed in, the "third" or Loveland Loess (the Loveland Silt of Wilman and Fry, 1970). TL and Be-10 data indicate that the Sangamon paleosol represents all of stage oxygen isotope stage 5 (not just stage 5e), a period of 50-80 k yrs. Pedologic data (horizonization, mineralogy, structure) suggest that the climate during Sangamon time was probably as warm or warmer than present but more monsoonal or drier than present.
- 3. The basal 3.5 m of Loveland Loess are labeled as Loveland Loess(?) because some descriptive, chemical, mineralogical, and isotopic data suggest that this interval is a separate loess. Another interpretation of the data is that there are one or more unrecognized paleosols in the lower half of the Loveland Loess sequence. Preliminary TL data suggest an age of about 190 ka for the basal few meters of Loveland Loess.
- 4. What is presently called the "Fourth" loess is tentatively correlated with the Crowleys Ridge Loess of Porter and Bishop (1990) and is labeled Crowleys Ridge Loess(?) on fig. 3 (Crowleys Ridge Silt in Markewich, 1993). No age data are presently available for this unit. The boundary between the Crowleys Ridge Loess and the Loveland Loess at Phillips Bayou is tentatively placed at 1386 cm below the top of the Farmdale paleosol at the Roxana Silt Peoria Loess contact. Age and soil micromorphological data, which should be available in 1994, may result in a repositioning of the Crowleys Ridge Loess Loveland Loess contact.

Discussion of the palynological composition of the Farmdale paleosol is given in the *Palynological Data* section of this report.

Mineralogy

S.G. VanValkenburg, H.W. Markewich, and D.A. Wysocki

A general discussion of the clay mineralogy of MMV loesses older than the Peoria Loess was included in Markewich (1993). X-ray diffraction data for the clay size fraction (<0.002 mm) for selected intervals of Peoria Loess in the Helena No. 1 core at Phillips Bayou are given in Table 4. Some traces are shown on figure 10. This core is from the crest of Crowleys Ridge, topographically upslope from Phillips Bayou quarry cut-face. We interpret the core as being entirely Peoria Loess. An expandable smectitic clay (between 17.2 and 18.0 A) and illite (about 10 A) are the main constituents. Quartz is present as a minor constituent in every sample. Dolomite and plagioclase feldspar are common at depths >5 m. Mineralogy of the <0.002 mm size fraction of the Helena No. 1 core compliments the mineralogy of the coarse silt fraction of the Helena No. 2 core shown in figure 9 (see also Table 2).

X-ray data indicate that there is no calcite present in either the coarse silt fraction or the clay fraction of any loess. Optically identifiable carbonate (dolomite) is restricted to the Peoria

Loess. Although quartz is a minor constituent of the <0.002 mm size fraction of every loess (fig. 10, Tables 2 and 3 and Markewich, 1993), it is the primary component of the 0.02-0.05 mm size fraction (figs. 7 and 9; Tables 2 and 3). Potassium feldspar is the second most abundant mineral in the coarse silt fraction of the loess. Plagioclase feldspar is most common in the Peoria Loess. This agrees with the descriptive data from Phillips Bayou that the older loesses appear to have either been leached as deposited (indicative of a slow deposition rate in a wet environment) or chemically and mineralogically altered due to long term subaerial exposure.

The data, as presented, do not show the percent of other weatherables (grains too altered to be identified) substantially increasing at stratigraphic boundaries or in pedogenically altered parts of the loess section. The high content of other weatherables throughout the section suggests that these highly weathered grains were deposited as part of the primary loess sequence. Further data reduction is necessary in order to determine what percent of these grains represent post depositional alteration.

Chemistry

E.M. Rutledge, H.W. Markewich, and D.A. Wysocki

Figures 11-14 are plots of chemical data from the Helena No. 2 core and the Phillips Bayou quarry cut-face. The data are plotted against depth of core or distance from the top of the Farmdale paleosol at the paleo-surface of the Roxana Silt (the Roxana Silt - Peoria Loess contact), which we used as a datum in describing the quarry cut-face at Phillips Bayou and the gully headwall at the Old River locality.

Generally, major stratigraphic breaks and interglacial paleosols are reflected in the chemistry of the sediments. However, none of the loesses appear to have a unique chemical signature. The one exception may be the Peoria Loess which is high in extractable Na (fig. 13). The reasons for the high Na values are thought to be from the weathering of plagioclase and other Na-rich feldspars in the Peoria Loess (Wilding and others (1963). The reasons for Na accumulation are not understood. Wilding and others (1963) suggested local hydrological conditions controlled accumulation in areas where the Peoria Loess is underlain by till. No data are available for suggesting controls on Na accumulation in soils of the unglaciated MMV. In the MMV, the Peoria Loess is commonly 5-15 m thick and underlain by loess or sandy alluvium.

Palynological Data F.J. Rich

Sediment from the Farmdale paleosol exposed in the Phillips Bayou quarry cut-face was prepared for palynological analysis. The sample consisted of a large quantity of moist, homogeneous, grayish brown (5YR 3/2) to moderate brown (5YR 3/4) silt. It was identified as Phillips Bayou 2A4, 62-85 cm dated at 28,980±800 yrs B.P. (Markewich, 1993). The sample was processed for pollen/spores by first mixing a few grams with 10% HCl to remove carbonates. After it was washed once with distilled water the residue was covered with HF. A vigorous reaction followed, during which most of the silicates were destroyed. After remaining in the HF for several days the residue was washed free of acid, then mixed with glycerin jelly and water. Only two slides were prepared for preliminary optical analysis, each with an area of 22x22 mm. One slide was scanned entirely while the other was studied in less detail.

The insoluble organic residue consisted of dark, angular particles, many of which were on the order of 0.002-0.005 mm across. There was a great deal of HF-insoluble mineral matter, most notably prismatic crystals of a of a mineral with a high refractive index and brilliant birefringence; these appeared to be zircon. Pollen/spores were extremely rare, with only three grains on the slide that was observed in detail. One was a grass, one was a composite, and the third was a rather well preserved cyst of the algae(?) *Pseudoschizea rufina*.

Almost nothing can be said about such an "assemblage" except that the cyst is of some interest. It is generally associated with freshwater marsh deposits.

The general lack of palynomorphs is actually more interesting that their presence in this sample. The color of the sediment, the area of its origin, and the fact that it is a silt all suggest that it would have abundant pollen/spores. Had the aerodynamic, hydrodynamic, and phytological aspects of the environment permitted, pollen and spores should have accumulated. Either plants did not grow where this silt was deposited, or their pollen and spores simply could not accumulate because they were either blown or carried away. Alternatively, it may be possible that at this locality the silt accumulated so rapidly that the pollen and spores were heavily diluted. The age data from Phillips Bayou do not support this last alternative but a local phenomenon should not be ruled out.

More work is necessary before any evaluation can be made of this units palynological characteristics.

OLD RIVER SECTION H.W. Markewich and D.A. Wysocki

The stratigraphy of the loess section at the Old River locality is similar to the stratigraphy at the Phillips Bayou locality, but there are some differences. The section is thinner, although the Peoria Loess thickness is probably comparable. The Sangamon paleosol at the Old River locality lacks the Mn concretions present at Phillips Bayou. Small pockets of the basal 1m of Roxana Silt at the Old River site include small irregularly shaped carbonate concretions and "ghost" gastropod shells; whereas no shell material or concretions were observed in the Roxana at the Phillips Bayou locality. Another difference is that the sand at the base of the Crowleys Ridge Loess(?) at the Phillips Bayou locality is not present at the Old River locality.

The following is a detailed description of the loess section described at the Old River locality, third Chickasaw Bluff (35°25'04" N. Lat., 89°58'29" W. Long., Drummonds 1:24,000 quadrangle). This location of this site was incorrectly given as 34°38'12' N. Lat., and 90°38'05"W. Long. in Markewich (1993). The error came from discrepancies in road locations on the 1:100,000 and the 1:24,000 topographic quadrangles. The sampled exposure is in high, nearly vertical, bluffs at the head of an active gully, directly across the road from the gate at the Lucado Ranch, on the east side of the Mississippi River in Tipton County, Tennessee.

A general description of this site was included in the Field Trip Guide for the 1975 meetings of the Southeastern Section of the Geological Society of America (Parks and Lounsbury, 1975). The same four loesses seen at Phillips Bayou are exposed here. From oldest to youngest they are the Crowleys Ridge Loess(?), the Loveland Loess, the Roxana Silt, and the Peoria Loess. The paleosol at the surface of the Roxana Silt has been correlated to the Farmdale paleosol of Illinois based upon stratigraphic position and age (C-14 data given in following description and in Markewich, 1993).

DESCRIPTION OF OLD RIVER LOESS SECTION

Location: 35°25'04" N. Lat., 89°58'29" W. Long., Drummonds 1:24,000 quadrangle,

Tipton County, Tennessee Date Described: October 20-22, 1992

Description By: D.A. Wysocki, E. Lewis, J. Jenkins, and L.B. Ward of USDA,

Soil Conservation Service

Notes: Horizon nomenclature and texture subject to revision. The top nine meters of Peoria Loess could not be described or sampled; the vertical wall was accessible only by rope. Beginning depth (900 cm) measured by tape from top of exposure.

Peoria Loess

Note: As reported in the section on C-14 ages, a 21 ka C-14 age and a 25 ka amino racemization/electron spin resonance age have been determined from gastropod shells in the basal 2 m of the Peoria Loess at this locality.

C1-900 to 950 cm; very pale brown (10YR 7/3) silt; few, moderate and coarse, prominent, strong brown (7.5YR 5/6) mottles; massive; few, small (< 5 mm), manganese masses; few, very fine and fine pores; no roots; few joints which occur diagonally across face; slightly effervescent with 1N HCl; occasional gastropod shell; occasional, round, hard, calcium carbonate/silica concretions up to 2 cm.

C2 - 950 to 1000 cm; pale brown (10YR 6/3) silt; common, small (1-2 cm), round pockets of dark grayish brown (10YR 4/2) silt from horizon below; few, fine, medium and coarse, prominent, strong brown (10YR 5/6) mottles; massive; joints of large prisms cut diagonally across face of exposure; thin, discontinuous, prominent, black (10YR 2/1) mangans on joint faces; few, very fine and fine pores; slightly effervescent with 1 N HCl. A thin (1-2 cm), strong brown (7.5YR 5/6) band occurs directly above contact of Roxana Silt; clear, smooth boundary.

Roxana Silt

2A1b – 1000 to 1021 cm; dark grayish brown (10YR 4/2) silt; common, small (1-2 cm), round pockets of pale brown (10YR 6/3) silt from overlying Peoria; massive in place; friable in hand; noticeable joint on pit face; dark brown (7.5YR 4\4) clay along surface of joint; very few, fine and medium, pores; some pores coated with dark red (2.5YR 3/6) ferrans; matrix gives no reaction with acid; one, small gastropod shell observed; clear, smooth boundary.

Note: A $26,490\pm270$ yrs B.P. C-14 age for the top of the Farmdale paleosol at the Old River site was reported in Markewich (1993). These ages are in good agreement with those for the same loess units at the Phillips Bayou locality (fig. 3).

2A2b - 1021 to -1040 cm; dark brown (10YR 3/3) silt; few, small (1-2 cm), round pockets of pale brown (10YR 6/3) silt from Peoria; massive in place; friable in hand; noticeable joint continues through this horizon; few, fine and medium, pores; some pores coated with dark red (2.5YR 3/6) ferrans; occasional, calcium carbonate/silica concretions; few, fine, soft iron masses; clear, smooth boundary.

2Bw1b -- 1040 to 1078 cm; dark brown (10YR 4/3) silt; few, small (1-2 cm), round pockets of pale brown (10YR 6/3) silt from Peoria; weak, coarse, prismatic structure; horizon is massive at some locations; common, fine and few, medium and coarse pores; most pores coated with dark red (2.5YR 3/6) ferrans; walls of some pores are oxidized; cutans cover ferrans on some pores; few, fine, soft iron masses; occasional, irregular, calcium carbonate/silica concretions; clear, smooth boundary.

2Bw2b -- 1078 to 1130 cm; brown (10YR 5/3) silt; few, small (1-2 cm), round pockets of dark grayish brown (10YR 4/2) silt from Peoria; common, fine prominent red (2.5YR 4/6) mottles; weak, coarse, prismatic structure; few, faint, discontinuous, grayish brown (10YR 5/2) silt coats on vertical surfaces of prisms; common, fine and few, medium and coarse pores; most pores coated with dark red (2.5YR 3/6) ferrans; some pores contain cutans which cover ferrans; few, small (1-2 cm), soft, iron masses; few, small (1-2 cm), soft, manganese masses; gradual smooth boundary. Subsampled: 1078-1104 cm; 1104-1130 cm.

2C1b — 1130 to 1177 cm; dark brown (7.5YR 4/4) silt; weak, very coarse (up to 1 m wide and several meters along vertical dimension), prismatic structure, massive between prisms; friable in hand; pockets from Peoria no longer evident at base of horizon some in upper part of horizon; few, fine and very fine pores; most pores are coated by thick (1-3 mm) yellowish red (5YR 5/6) ferrans; very pale brown (10YR 7/2) clean silt grains on vertical faces of joints and on faces of prisms observable under 10X lens when dry; matrix has no reaction with HCl; occasional, hard, small (1-2 cm), round calcium carbonate/silica concretion; gradual, wavy boundary.

2C2b – 1177 to 1231 cm; dark brown (7.5YR 4/4) silt; few, medium and coarse, strong brown (7.5YR 5/6) and yellowish brown (10YR 5/6) mottles; very coarse (up to 1 m wide and several meters along vertical dimension) prismatic structure, massive between prisms; friable in hand; very few, fine and common, fine pores; most pores coated by thick (1-2 mm) dark red (2.5YR 3/6) ferrans; Some pores have black (10YR 2/1) mangans which coat the ferrans; common, thin, discontinuous, dark brown (7.5YR 4/4) and yellowish brown (10YR 5/4) cutans on faces of prisms; occasional small (<2 cm), soft manganese masses; occasional small (<2 cm), soft iron masses; matrix gives no reaction with HCl; occasional, small (1-2 cm) calcium carbonate concretion/silica; gradual, smooth boundary.

Loveland Loess

3Bt1b - 1231 to 1243 cm; yellowish red (5YR 4/6) silty clay loam; common, fine, faint yellowish red (5YR 5/6) mottles; moderate, medium, subangular blocky structure; firm; many, thick, continuous, prominent dark reddish brown (2.5YR 3/4) cutans on surfaces of peds; many (50% of surfaces), discontinuous, pale brown (10YR 6/3) coats of clean silt (skeletans) atop cutans on faces of peds; few, fine and medium pores; occasional, small (1-4 cm) calcium carbonate/silica concretion; clear, smooth boundary.

3Bt2b-1243 to 1267 cm; yellowish red (5YR 4/6) clay; strong, very coarse and coarse, subangular blocky structure which parts to moderate, medium, subangular blocky structure; firm; many, thick, continuous, prominent, dark red (2.5YR 3/6) cutans on surfaces of peds; many (25% of surfaces), discontinuous, pale brown (10YR 6/3) coats of clean silt (skeletans) atop cutans on faces of peds which fade with drying; few, fine, discontinuous, tubular pores; most pores coated with dark red (2.5YR 3/6) cutans; gradual, smooth boundary.

38t3b - 1267 to 1294 cm; yellowish red (5YR 4/6) clay (field estimate 45% clay); weak, coarse, prismatic structure which parts to moderate or strong, medium, angular blocky structure; firm; many, thick, continuous, prominent, dark red (2.5YR 3/6) cutans on surfaces of peds, horizon of maximum cutan development; common (15% of surfaces), discontinuous, pale brown (10YR 6/3) coats of clean silt grains (skeletans) atop cutans on faces of peds which fade with drying; few, fine, discontinuous, tubular pores; most pores coated with dark red (2.5YR 3/6) cutans; gradual, smooth boundary.

3Bt4b - 1294 to 1321 cm; yellowish red (5YR 4/6) clay (field estimate 35-40% clay); many (30%), medium and coarse, prominent, brownish yellow (10YR 6/6) mottles; weak, coarse, prismatic structure; firm; many, thick, continuous, prominent, dark red (2.5YR 3/6), and few, thin, discontinuous, pale brown (10YR 6/3) cutans on surfaces of peds; few, fine, tubular pores; most pores coated with dark red (2.5YR 3/6) cutans; occasional, small (1-2 cm) hard, round calcium carbonate/silica concretions gradual, smooth boundary.

3Bt5b - 1321 to 1352 cm; reddish brown (10YR 5/6) silt loam or silty clay loam (field estimate 25% clay); common, medium, distinct, pale brown (10YR 6/3) mottles; weak, medium and coarse, subangular blocky structure; firm; common, thin, discontinuous, yellowish red (5YR 4/6) cutans on surfaces of peds; few, fine and medium pores; most pores coated by cutans of same color as surfaces of peds; occasional, small (1-2 cm), hard, round calcium carbonate/silica concretion; clear irregular boundary.

3BCtb-1352 to 1389 cm; reddish brown (10YR5/6) silt loam (field estimate 15% clay); few, fine, distinct, pale brown (10YR6/3) mottles; weak, medium and coarse, subangular blocky structure; friable; common, thin, discontinuous, yellowish red (5YR4/6 and 5/6) cutans on surfaces of peds; few, fine pores; most pores coated by cutans of same color as surfaces of peds; occasional, small (1-2 cm), hard, round calcium carbonate/silica concretion; slight brittleness noted in parts of horizon; gradual, smooth boundary.

3Ctb -1389 to 1429 cm; mottled strong brown (7.5YR 5/8) and pinkish gray (7.5YR 6/2) silt loam (field estimate 19% clay); weak, very coarse, prismatic structure; massive between prisms; friable in hand; common, thin, discontinuous, strong brown (7.5YR 4/6) cutans on surfaces of prisms; common, fine pores; some pores coated by cutans of same color as surfaces of prisms; common, small (<1 cm), black (10YR 2/1) manganese masses adjacent to grayish mottles; common, patchy, pale brown (10YR 6/3) skeletans on some faces of prisms; clear, smooth boundary.

Crowleys Ridge Loess(?)

4C1b -- 1429 to 1457 cm; dark brown (7.5YR 4/4) silt loam (field estimate 12-15% clay); common, fine and medium, distinct, reddish gray (5YR 5/2) mottles; massive; friable in hand; occasional prism extending from above horizon; thin, discontinuous, strong brown (7.5YR 4/6) cutans on surfaces of prisms; few, very fine and fine pores; abrupt change in pore distribution from above horizon; few, small (1-2 cm), black (10YR 2/1) manganese masses; brittleness noted in parts of horizon; gradual, smooth boundary.

4C2b -- 1457 to 1482 cm; strong brown (7.5YR 5/6) silt loam (field estimate 12-15% clay); fine, distinct, reddish gray (5YR 5/2) mottles; massive; friable in hand; occasional prism extending from above horizon; thin, patchy, strong brown (7.5YR 4/6) cutans on surfaces of prisms; few, very fine and fine pores; few, small (1-2 cm), black (10YR 2/1) manganese masses; brittleness noted in parts of horizon; diffuse, smooth boundary.

4C3b -- 1482 to 1538 cm; strong brown (7.5YR 4/6) silt loam or loam (field estimate 12-15% clay); sand content increases with depth in horizon; common, distinct, reddish gray (5YR 5/2) mottles which occur as "halos" around rhizospheres; massive; friable in hand; occasional prism; few, fine pores; few, small (1-2 cm), black (10YR 2/1) manganese masses; brittleness noted in parts of horizon; gradual, smooth boundary.

Subsampled: 1482-1510 cm; 1510-1538 cm.

4C4b - 1538 to 1564 cm; strong brown (7.5YR 5/6) sandy loam (field estimate 12-15% clay); sand content increases with depth in horizon; massive; very friable in hand; occasional prism (1 m or larger); few, fine and medium pores; occasional pore coated by yellowish red (5YR 4/6) cutans; few, small (1-2 cm), black (10YR 2/1) manganese masses; this horizon may have been E for underlying paleosol; clear, smooth boundary.

Unnamed alluvium

5EBtb -- 1565 to 1580 cm; mottled strong brown (7.5YR 4/6) and yellowish brown (10YR 5/6) sandy loam; massive; very friable; occasional prism (1 m or larger); common, fine, and few, medium pores; most pores coated by yellowish red (5YR 4/6) cutans; few, small (1-2 cm) black (10YR 2/1 manganese masses; clear, smooth boundary.

5Bt1b — 1580 to 1604 cm; yellowish red (10YR 4/6) sandy clay loam or sandy clay; common, medium, distinct yellowish brown (10YR 5/6) common, fine, distinct, brownish yellow (10YR 6/6) and few, fine, prominent, red (2.5YR 4/6) mottles; weak, medium to very coarse, subangular blocky structure; friable; occasional prism (1 m or larger); few, medium and coarse pores; most pores coated by yellowish red (5YR 4/6) cutans; few, small (1-2 cm) black (10YR 2/1) manganese masses; clear, smooth boundary.

5Bt2b - 1604 to 1625 cm; yellowish brown (10YR 5/6) sandy clay or clay loam; many coarse, prominent, red (2.5YR 4/6) mottles; common, medium, prominent, dark yellowish brown (10YR 4/6) reticulate, iron nodules which is near the stage of plinthite; weak, medium to very coarse subangular blocky structure; firm; occasional prism (1 m or larger); thin, discontinuous, yellowish red (5YR 4/6) and pale brown (10YR 6/3) cutans on surfaces of peds; few, fine pores; some pores coated by thick (0.5-1 cm), yellowish red (5YR 4/6) cutans; some pores coated by thin (1-2 mm) black (10YR 2/1) mangans; clear, wavy boundary.

5Bt3b - 1625 to 1689 cm; mottled brownish yellow (10YR 6/6), light brownish yellow (10YR 6/2), strong brown (7.5YR 5/8 and 5/6), and red (10 4/6) sandy clay loam with pockets of sandy clay; weak, very coarse, subangular blocky structure; firm; occasional prism (1 m or larger); thin, discontinuous, yellowish red (5YR 4/6) cutans on surfaces of peds; few, fine pores; some pores coated by thin, yellowish red (5YR 4/6) cutans; clear, wavy boundary (trough = 42 cm, wavelength = 1m). Subsampled: 1625-1657 cm; 1657-1689 cm.

5BCtb — 1689 to 1752 cm; mottled yellowish brown (10YR 5/6), brownish yellow (10YR 6/8), and light gray (10YR 7/2) sandy loam with pockets of sandy clay loam; weak, very coarse, subangular blocky structure; friable; few, fine pores; few, rounded chert pebbles; clear, smooth boundary

Subsampled: 1689-1721 cm; 1721-1752 cm.

5C1b -- 1752 to 1792 cm; strong brown (7.5YR 5/6) stratified sandy loam with gravel beds 4-10 cm thick which includes bands of ironstone up to 1 cm thick, common, medium and coarse, distinct, brownish yellow (10YR 6/8) and light gray (10YR 7/2) mottles; massive; very friable in hand; common, fine and few, medium pores; most pores coated by thin yellowish red (5YR 4/6) cutans; abrupt, smooth boundary.

Pliocene(?) and or Pleistocene sand and gravel (locally referred to as the Citronelle and (or) Lafayette Formation)

6C2b - 1792 to 1853 cm; stratified with alternating layers of yellowish red (7.5YR 6/6), light gray (10YR 7/2) and light brownish gray (2.5Y 6/2) loamy fine sand; strata vary slightly in particle size; single grained; loose; top of horizon capped 1-2 cm band of ironstone.

Subsampled: 1792-1821 cm; 1821-1853 cm

REFERENCES CITED

- Markewich, H.W., (editor), 1993, Progress report on chronostratigraphic and paleoclimatic studies, Middle Mississippi River Valley, Eastern Arkansas and Western Tennessee: U.S. Geological Survey Open-File Report 93-273, 61 p.
- Martinson, D.G., Pislas, N.G., Hays, J.D. Imbrie, J., Moore, T.C., Jr., and Schackleton, N.J., 1987, Age dating and the orbital theory of the ice ages: development of a high resolution 300,000-year chronostratigraphy: Quaternary Research, v. 27, p. 1-29.
- Mirecki, J. and Skinner, A., 1991, Aminostratigraphy and electron spin resonance dating of terrestrial mollusks from late Quaternary loesses of the central Mississippi Valley: Geological Society of America Abstracts with Programs, v. 23, no. 5, p. A408.
- Parks, W.S., and Lounsbury, R.W., 1975, Environmental Geology of Memphis, Tennessee, in Stearns, R.G., Field Trip Chairman, Field Trips in West Tennessee, Report of Investigations No. 36, Tennessee Division of Geology, p. 35-63.
- Porter, Donna and Bishop, S., 1990, Soil and lithostratigraphy below the Loveland /Sicily Island silt, Crowleys Ridge, Arkansas: Proceedings of the Arkansas Academy of Sciences, v. 44, p. 86-90.
- Rutledge, E.M., West, L.T., and Guccione, M.J., 1990, Loess deposits of northeast Arkansas in, Guccione, M.J., and Rutledge, E.M., (eds.), Field guide to Mississippi Alluvial Valley, northeast Arkansas and southeast Missouri: Friends of the Pleistocene, South-Central Cell, Geology Department, University of Arkansas, Fayetteville, Arkansas, p. 57-98.
- Saucier, R.T., and Snead, J.I., (compilers), 1989, Quaternary geology of the Lower Mississippi Valley: Louisiana Geological Survey, map scale 1:1,100,000.
- Soil Survey Staff, 1992, Soil Survey laboratory manual: Soil Survey Investigations Report No. 42, version 2.0, 400 p.
- Wilding, L.P., Odell, R.T., and Fehrenbacher, J.S., and Beavers, A.H., 1963, Source and distribution of sodium in solonetzic soils in Illinois: Soil Science Society of America Proceedings, v. 27, no. 4, p. 432-438.
- Wilman, H.B., and Fry, J.C., 1970, Pleistocene stratigraphy of Illinois: Illinois State Geological Survey Bulletin 94, 204 p.

Table 1. TL and Be-10 inventory ages for selected depths in the Phillips Bayou loess section.

Samples taken from quarry cut-face.

Distance from top of Farmdale paleosol	Field No. TL sample	TLTB (Total Bleach) age 10 ³ yr	TLTB error bar 10 ³ yr	TLPB (Partial Bleach) age 10 ³ yr	TLPB error bar 10 ³ yr	TLWA (weighted average) age 10 ³ yr	TLWA error bar 10 ³ yr	Calculated Be-10 age 10 ³ yr
+90 cm	MMV-18	26.3	2.3	20.5	3.6	24.7	1.9	
-220 cm	MMV-19	31.3	2.6	38.8	3.8	33.7	2.1	44
-473 cm	MMV-20	43.7	3.9	50.1	5	46.1	3	60
-723 cm	MMV-21	121	16	123	27	122	14	124
-1386 cm	MMV-22	193.7	39.7	173.6	43.0	189	3	183

^{*/} In the Middle Mississippi River Valley, the Farmdale paleosol marks the paleo-surface of the Roxana Silt and has a C-14 age between 26 and 29 Ka (Markewich, 1993; this report).

Fig. 1. Generalized location map - Lower Mississippi River Valley. The Quaternary alluvial valley is shown in light gray. Uplands are dark gray. Areas of loess are not shown.

Figure 2. Generalized location map showing the study area in Mississippi, Tennessee, and Arkansas. Geology based on Saucier and Snead (1989), Guicionne and Rutledge (1990), this study, and current investigations of the SCS, Little Rock (L.B. Ward, unpublished field notes, 1990-1994). Not shown are locations of sites in Missouri, Arkansas, and Mississippi that are scheduled to be sampled in 1994 and 1995.

Figure 3. Composite stratigraphic column for loess and alluvial sequence underlying the southern end of Crowleys Ridge near Phillips Bayou, Arkansas. Descriptions are from the Helena No. 2 core and the Phillips Bayou quarry cut-face. Geologic and pedologic unit names are from published litherature: Peoria Loess and Roxana Silt (Wilman and Fry, 1970); Loveland loess (Daniels and Handy,1959), Crowley's Ridge Loess (Porter and Bishop, 1990). Compositional data are given in Tables 2 and 3. Age data are given in the text and in Table 1.

Figure 4. Be-10 inventory data for selected horizons. (a) loess, Yocona River site. (b) Citronelle(?) sand and gravel, Yocona River site. (c) loess and aeolian(?) sand, Phillips Bayou quarry cut-face. Because data are for selected horizons, the points are not connected, except in (a). Data points in (a) are connected only to clarify relative positions, not to indicate that intervening points would necessarily lie on the curve. Stratigraphic boundaries are not shown, but general stratigraphic position is indicated by unit and (or) paleosol name.

Figure 5. Plot of color vs. depth for the Holocene surface soil developed in Peoria Loess (Helena No. 2 core) and for aeolian and alluvial deposits exposed in the Phillips Bayou quarry cut-face.

Figure 6. Weight percent sand, silt, and clay vs. depth for Phillips Bayou quarry cut-face. Dashed line shows contact between calcareous and noncalcareous loess at top of the Farmdale paleosol.

Figure 7. Coarse silt (0.02-0.05 mm) mineralogy of loesses exposed in the Phillips Bayou quarry cutface. X-ray diffraction data for the coarse silt fraction indicate that all carbonate minerals are dolomite. The category "other amphiboles" includes all amphiboles and pyroxenes for which the specific mineral could not be positively identified. The category "other weatherables" includes all grains that have been weathered (altered) beyond recognition.

Figure 8. Sand, silt and clay vs. depth for loess samples taken from Helena No. 2 core. Sample intervals given in Table 1. Loess is probably all Peoria, but based on altitude of Peoria Loess/Roxana Silt contact in cut-face of Phillips Bayou quarry, the basal 5 m could be Roxana Silt. Most sand size particles are Mn or carbonate/silica concretions.

Figure 9. Coarse silt (0.02-0.05 mm) mineralogy of the Peoria Loess for selected samples of the Helena No. 2 core, located just upslope from Phillips Bayou quarry cut-face. Entire core probably Peoria Loess, but basal 5 m are possibly Roxana Silt. X-ray diffraction data for the coarse silt fraction indicate that all carbonate minerals are dolomite. The category "other weatherables" includes all grains that have been weathered (altered) beyond recognition.

Figure 10. X-raydiffraction patterns for glycolated samples of the <0.002 mm fraction of selected horizons in the Helena No. 1 core, located on crest of Crowleys Ridge near Phillips Bayou, Arkansas. All samples are of Peoria Loess.values are in angstroms. I, illite; ES, expandable smectitic clay; K,kaolinite; Q, quartz; KF, potassium feldspar; PL, plagioclase; D L, dolomite.

Figure 11. Dithionite-citrate extractable Fe for (a) Helena No. 2 core, and (b) Phillips Bayou quarry cut-face. The 0 cm datum in (b) is the Peoria Loess/Roxana Silt contact at the top of the Farmdale paleosol. This datum is alligned with the projected position of the Peoria Loess/Roxana Silt contact in the Helena No. 2 core based on altitude of contact in the cut-face. Where points are not connected there are no data.

Figure 12. NH₄OAc extractable Mg and Ca for loess, aeolian(?) sand, and alluvium from the Helena No. 2 core and the Phillips Bayou quarry cut-face.

Figure 13. Plots of NH4OAc extractable Na and K for the Phillips Bayou quarry cut-face. Stratigraphic boundaries as determined in the field are shown by the solid balck lines. No attempt has been made to explain the abrupt increases and decreases in Na.

Figure 14. Plots of NH₄OAc extractable Na and K for the Helena No. 2 core. The Peoria Loess/Roxana Silt contact (solid black line) is based on altitude of contact in Phillips Bayou quarry cut-face. Contact cannot be seen in core.

Table 1. TL and Be-10 inventory ages for selected depths in the Phillips Bayou loess section.

Samples taken from quarry cut-face.

Distance from top	Field No. TL	TLTB (Total	TLTB error bar	TLPB (Partial	TLPB error bar	TLWA (weighted	TLWA error bar	Calculated Be-10 age
of Farmdale plaeosol*	sample	Bleach) age 10 ³ yr	10 ³ yr	Bleach) age 10 ³ yr	10 ³ yr	average) age 10 ³ yr	10 ³ yr	10 ³ yr
.00	2 52 52 5 5 6							
+90 cm	MMV-18	26.3	2.3	20.5	3.6	24.7	1.9	
-220 cm	MMV-18 MMV-19	26.3 31.3	2.3	20.5 38.8	3.6	24.7 33.7	2.1	44
								44 60
-220 cm	MMV-19	31.3	2.6	38.8		33.7		

^{*/} In the Middle Mississippi River Valley, the Farmdale paleosol marks the paleo-surface of the Roxana Silt and has a C-14 age between 26 and 29 Ka (Markewich, 1993; this report).

	dith-cit Mn pct <2mm 6D2a		0.0	0 0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	5	0.1		0.1	0.1	0.1	0.1	0.1	0.1	
	dith-cit d Al pct N <2mm < 6G7a (0 1	- +- o o	0.1	0.1	0.1	0.1	1.0	0.1	0.1	0.1	0.1	- 5	0.1		0.1	0.1	0.1	0.1	0.1	0.1	
	dith-cit dith-cit Fe pct Al pct <2mm <2mm 6C2b 6G7a		0.6	7.0	-	1.2	1.6	1.5	4	1.5	1.5	1.5	9.1	-	4.			1.7	1.5	4.	0.8	0.8	
rkansas	KCIMn		2.7	4 4	1.6	1.2	9.0	0.8	. 2.		0.8					:	***************************************						••••••
Table 2. Data from Helena No. 2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	total C pct<2 mm 6A2d		2.53	0.25	0.14	0.11	0.13	0.09	0.1						0.09		0.1						
, Southe Proced	orgn C pct 6A1c		2.33	0.47	0.11	0.11	0.09	0.07	0.07	0.07	0.08	0.08	0.08	0.0	90.0	0.07	0.07	0.07	90.0	0.05	0.06	0.07	
rs Ridge Inalytical methods	5- vcs pct.1.0-2.0 orgn C f pct of pct nm <2mm 6A1c .1 3A1		0.0	0 0	0	. 0	0	0.1	0.1	0.1	0.1	0.1	0.1	>	0.1	0.1	0	0	0	0	0.1	0.1	
Data from Helena No. 2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeaste Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	cs .5- 1.0 pct of <2mm 3A1		0.3	0	0.1	0.2	0.1	0.1	0.0	0.1	0.1	0.1	0.0	5	0.1	0.1	0.1	0	0.1	0.1	0.1	0.1	
incoln, iptions o	ms .255 pct of <2mm 3A1		9.0	O C	4.0	. 0.5	0.5	0.5	0	0.1	0.1	0.2	0.1	- -	.0	0.1	0.1	0.1	0.2	0.1	0.1	0.2	
hilips Bayou, upslope from quarry cut-face, south en used by the National Soil Survey Laboratory in Linco to Soil Survey Staff (1992) for complete description Where data elements are blank, no analysis was run.	fs .125 pct of <2mm -3A1	-	0.5	4. 4.	0.5	0.5	0.2	0.2	0	0.1	0.2	0.2	0.2	- - -	0.2	0.5	0.2	0.3	0.4	4.0	0.5	0.7	***************************************
ry cut-fa y Labora complei no anal)	vfs 0510 pct of <2mm 3A1	v	1.9	- -	Ξ	1.3	1.3	3.2	2.7	2.8	0.8	1.6	1.6))	2.6	4.4	2.1	4	2.9	5.5	3.9	5.1	
om quar oil Surve 992) for e blank,	csi .02- vfs .05 pct .0510 of pct of <2mm <2mm 3A1 3A1	Peoria Loess	47.9	40.3	42.1	43.4	43.9	45.1	44.7	47.2	4	38.7	45.5	r P	52.6	50.2	54.7	52.8	56.6	22	52.5	54.3	
oslope fr tional Sc Staff (1 ments ar	fsi .002- .02 pct of .2mm 3A1	Pe	38.7	4 2 2	38.6	36.8	31.5	34	34.9	34	38.5	38.9	36.3		33.1	33.4	32.3	31.7	30	28.1	30.8	30	
Bayou, u _l r the Na il Survey data eler	CO3 cly .002 c2mm 3A1				† · · · · ·					. i								.i 	:				
Phillips Eused by at to Soil	fcly .0002 pct of <2mm 3A1		· · · · · · ·	v. 0		9.7			10.1	· ·			8.6				5.7	······································					
core at l e codes s referre	s .05-2.0 pct of <2mm 3A1		3.4	n 0	2.7	2.5	1.8	3.6	6. 4	3.1	1.2	8	0.0	,	2.8	4.7	2.4	5.3	3.5	9	4.6	6.1	
elena No. 2 core at Ph r notation are codes u The reader is referred V	si s .002- 05-2.0 .05 pct pct of of <2mm 3A1		86.6	82.5	80.7	80.2	75.4	79.1	79.6	81.2	79.5	9.77	81.8	0.	85.7	83.6	87	84.5	9.98	85.1	86.3	84.3	
m Helen <i>mber n</i> o <i>The</i>	cly .002 pct of .2mm .3A1		10	15.6	17.2	17.3	22.8	17.3	17	15.7	19.3	20.4	16.3	<u>-</u>	11.5	11.7	10.6	10.2	6	8.9	- 0	9.6	
Data fro	horiz. thk. (cm)		10	22	20.	18	38	27	25	(၉	33	34	25	T	36	36	3 4	1	24	42	27	27	
Table 2.	color		10YR4/2	7.5YR4/4	7.5YR5/4	10YR7/2	7.5YR4/4	7.5YR4/4	7.5YR5/4	7.5YR5/4	7.5YR5/4	7.5YR5/4	7.5YR4/4	 † †	7.5YR5/4	7.5YR5/4	10YR7/2		10YR4/3	10YR5/2	2.5Y5/2	2.5Y5/2	
	horiz. desig.		ν · · · · · · · · · · · · · · · · · · ·		Ω	E/8 1	BT1 7	BT1 .7	BT2		***		BC1 7			BC2 7	<u>.</u> .			င္	C4		*** **
	horiz. base (cm)		0 0	67	92	110	148	175	200				325))	385	421	455	489	513	555	585	609	
	horiz. Lop (cm)		0 ;	- 4	29	92	110	148	175	200	233	266	300	3	349	385	421	455	489	513	522	582	

		dith-cit Mn pct <2mm 6D2a	0.1	0.1	0.1	0.1	0.0000000000000000000000000000000000000	0.1 0.1 0.1
		dith-cit dith-cit dith-cit Fe pct Al pct Mn pct <2mm <2mm 6C2b 6G7a 6D2a	0.0	0.0	0.1	0.1	000000000000000000000000000000000000000	0.1 1.0 1.1
		dith-cit c Fe pct <2mm 6C2b	0.8	0.6	0.4	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.2 1.5 0.4
kansas		KCI Mn	+ + •	†** •				······································
stern Arl	es S	total C pct<2 K mm 6A2d			1.69		····	:
Southea	procedures	orgn C tc pct p	0.07	0.03 0.03 0.04	0.05 0.05 0.05	0.04 0.04 0.06	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.06 0.07 0.05
Ridge,		vcs 11.0-2.0 o pct of <2mm 6	1.00	000	0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0.1
rowleys	B for and these m	cs .5- 1.0 pct 1.0 of po <2mm <3	0.1	0.1	1.0	0.00	0.000000000	0.1
ond of C	icoln, NI ions of in.	ms cs .255 1.0 pct of <2mm <2 3A1	1.0	0.0	0.1	0.1	0000000000	0.1
hillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas	used by the National Soil Survey Laboratory in Lincoln, NB for analytical I to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	.1- pct 1	0.5	0.3 0.1	0.1	0.2 0.2 0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.5 0.3
cut-face	Laboratc omplete o analys		5.9 7.4 7.4	3.7 9.3 1.7	2.6 2.6 4.5	2.9 1.2 2.1 2.1	1.5 1.5 1.7 1.7 1.7 1.7 1.7 1.7	3.2 3.4 1.8
n quarry	Survey 92) for c blank, n	02- pct r	53.6 55 55.1	63.6 54.3 57.8	57.6 57.3 54	57.4 5.1 5.2 5.4.8	54.5 49.6 49.4 51.5 53.9 54.5 54.5	54.8 54.7 58.2
lope fror	nal Soil itaff (199 ents are	fsi csi	30.1 31.5 28.2	, ,	30.1 31.1 34.9	30.3 36.9 33.6 35.7	33.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	34.1 35.4 32.6
sdn 'no/	used by the National d to Soil Survey Staff Where data elements	cO3 cly .0 cly .002 .02 pct of .22mm <2 3A1 3		<u> </u>				
illips Bay	sed by to to Soil S Vhere da			 	6.2	8.	<u> </u>	3.7
re at Ph	- G C	s tcly .05-2.0 .0002 pct of pct of <2mm <2mm 3A1 3A1	6.7	9.8 1.8 1.8	4.6 2.7 2.9	3.1 2.5 2.7	6 + 4 0 + 2 7 0 6 + 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.8 3.9 1.9
lo. 2 col	r notation are codes u The reader is referred	si s .00205-2.0 .05 pct pct of of <2mm 3A1 3A1	3.7	88.9 83.6 90.6	87.7 88.4 88.9	87.7 87.9 85.6 90.5	8.00 8.80 8 8.00 6.00 4.00 8.80 8 6.00 6.00 7.00 8.80 8	88.9 90.1 90.8
lelena N	er notati The reć	y .00 02 .05 of .05 nm <21	1	6.9 8.6.6 8.6.9	7.7 8.9 8.2 8	9.2 10.6 8 11.9 8 9.9	10.5 7.6 9.7 7.8 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	7.3 8 6 9 7.3 9
Table 2. Data from Helena No. 2 core at P	Letter/number notation are codes The reader is referre	cly iz002 k. pct of n) <2mm 3A1		22 37 27	2 4 5 3 4 0 4 5	3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 4 4 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5	2 2 3 3
2. Dat	Leth	horiz. thk. (cm)	0.0.4		& G:4	4644	2 4 6 6 6 6 6 6 7 4 4	/8 /3 /8
Table		color	2.5Y5/2 10YR5/2 10YR5/4	10YR6/3 10YR7/3 10YR6/3	10YR6/3 10YR6/2 10YR6/4	10YR6/4 10YR6/3 10YR6/4 10YR6/4	10YB6/2 10YB6/3 10YB6/3 10YB6/3 10YB6/3 10YB6/3 10YB6/3	10YR5/8 10YR5/8 10YR6/3
		horiz. desig.	2 5 8	C3 C8 C8 C9	C10 C11	C12 C13 4 tO	C15 C10 C20 C20 C22 C23 C23	C24 C24 C25
		horiz. base (cm)	663 703 722		834 874 908	942 969 1001 1033	1060 1079 1124 1172 1210 1276 1311 1383	1408 1434 1467
		horiz. top (cm)	636 663 703	722 744 781	808 834 874	908 942 969 1001	1033 1060 1079 1124 1172 1210 1256 1276 1311	1383 1408 1434

0.000 Mn pct <2mm 0.1 0.1 0.1 0.1 0.1 0.00 dith-cit dith-cit dith-cit Fe pct Al pct 1 <2mm <2mm 0.1: 0.1 1.00 0.1 0.1 0 00 0.1 0.1 0.5 0.5 0.5 0.7 ح ري အ စ စ စ 6C2b 8 .. ق ö 00000 ö KCI Mn Table 2. Data from Helena No. 2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas total C mm 6A2d Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. 0.07 0.1 0.19 ms cs.5- vcs .25-.5 1.0 pct 1.0-2.0 orgn C 0.05 0.05 90.0 0.05 0.07 0.09 0.15 pct 6A1c 0.07 21 ö pct of <2mm (0.1 -0000 0.1 0.1 0.1 0 <2mm <2mm 1.000 00000 0.1 0.1 0. ō ö 00000 0.2 0.1 pct of 0.1 0.1 ö Where data elements are blank, no analysis was run. pct of of p csi .02- vfs fs .1-0.2 0.3 0.2 0.2 0.3 0.1 E. 0 . 3 1 . 0 . 3 1 . 0 . 3 N 0.3 0.2 3A1 ö 2.4 1.2 1.6 1.6 2.9 1.8 2.6 1.6 2.4 1.3 3.6 4 2.8 3A1 csi .02-<2mm 53.5 57.1 53.1 53.6 56.3 51.8 53.8 57.2 54.9 57.8 57.2 55.2 ဖြ N 6 4 n بي 49. 90 51. 56. 55. 55. ō .02 pct <2mm <2mm 32.7 34.8 32.4 30.7 36.5 fsi .002-37.7 34.3 35.9 36.9 32.4 37.8 34.6 28.5 42 30.2 33.7 33.3 က ō 3A1 38. <2mm pct of .002 3A1 Ç G fcly .0002 pct of 5. 4.5 4.5 4 c 7 4.2 3.4 ິຕ .05-2.0 2.6 1.3 3.2 3.2 2 9 2.5 3.8 2.2 pct of <2mm 1.7 2 N **α**. ω က် તં: .05 pct ... of <2mm si .002-88.1 91.3 89.5 88.7 89.6 88.4 90.1 88.8 9 7 9 9 9 91.2 œ Ö 3A1 89. 89. 89. 90. 90 93 7.9 pct of 7.9 7.1 8.2 4 2 8 8 8 8 8.1 7.7 8.4 8.3 6.3 ວ <2mm 6.4 cly .002 3A1 4 0 0 0 0 0 49 39 38 horiz. thk. (cm) 10YR6/3 10YR6/3 0YR6/3 10YR6/4 10YR6/3 2.5Y6/4 2.5Y5/4 2.5Y5/4 2.5Y5/4 2.5Y5/4 5Y5/2 2.5Y6/4 2.5Y6/4 5GY5/1 5Y6/4 5Y5/4 5Y5/4 5BG4/1 color ď horiz. desig. C33 C25 C26 C28 C32 C32 C32 C33 C33 C27 C28 C28 S3 S3 S3 1540 1717 2111 2180 1501 1589 1635 1872 1951 1993 2035 2073 2219 1682 1752 1792 1832 2257 base (cm) 2219 1540 1589 1635 1682 1717 1752 1792 1832 1872 1912 1951 1993 2035 2073 2111 2180 1467 1501 horiz. top (cm)

	PH		4 8. 4	3.8	:	3.5	3.4				4. 4 C. Q		5	5.5		0 4	. r.	5.6	5.7	5.9	6
s es	pH CaCl2 .01M 8C1f		5.4	4 L 4	•	89.0	ა გ. 4	4.2	4.5		ט טיני	5.6	5.8	9	ď	o +	- 0	6.4	9.9	9 .8	6.9
n Arkans	рН H2O 8C1f		5.2 4.9	8.4		4.9	5.1	5.2	5.4	8	2 2 2	6.2	6.5	9.9	· · · · · · · · · · · · · · · · · · ·	o () (C	7	7.2	7.3	7.5
itheaster sedures.	CO3 pct <2mm 6E1g	,	+ -	**		ttr								· · · · · ·			-		***	•	
2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. r is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	Base Sat (NH4OAC) meq/ 100g 5C1	 ;	82.7	53.4		51.9	79.1	85.5	91.4	97.4	101.2	106.9	117.6	Ξ	•	100.0	109.9	112.9	111.5	106.8	111.2
Crowleys NB for and	Base Sat (sum) in pct 5C3 1		30	36	; ;	88	63	2.0	73	80	χ Ο 4	8 8	87	87		0 0	06	87	96	100	66
h end of Lincoln, iptions o run.	Al sat 5G1	:	28	25) 	31	2	 4	N	_			· A ***********************************			*********		:			
ce, south	OEC (bases + Al) 5A3b		9.5	5.1	; ;	8.1	12.7	 13.6	13.1	15.1							erake care				
ry cut-fa y Labore comple no anal	OBC (NH4O AC) meq/ 100g 5A8b	Peoria Loess		7.3)	10.8	14.8	 15.2	14	15.4	16.1	13.1	11.9	11.8		0 0		11.6	11.3	11.8	11.6
om quar oil Surve 992) for e blank,	CEC Sum Cats meq/ 100g 5A3a	P. A.	16.7	10.5) i	14.4	18.7	18.5	17.5	18.7	20.4	16.7	16	15		 	. 4		13	12.6	13
elena No. 2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, r notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	extr. Al meq/ 100g 6G9b	 i	4.1.1	L L): :	2.5	N -	 9.0	0.3	0				·							
is Bayou, if by the N Soil Surv ere data e	acidity meq/ 100g 6H5a	:	7.6	6.7		8.8	10.1	 5.5	;			2.7	Ø	1.9	······································		ا 1 د	6.	0.5	0	0.1
at Phillip odes used ferred to Whe	NH4OAC extr. Sum Bases me q/ 100g	·	9.1	0. 4 0. 6)	5.6	10.4	 13	12.8	15.	16.3	1. 4	<u>-</u>	13.1	· · · · · · · · · · · · · · · · · · ·	2	 	13.1	12.6	12.6	12.9
No. 2 core	wH4OAC extr. K meq/ 100g 5B5a 6Q2b	 :	0.0	0.1)	0.3	ກ ຕ ວ ວ	 0.5	0.5	0.5	n	0.0	0.3	0.1		9 0		0.5	0.1	0.5	0.5
Helena h	thtoac natt. Nameq/ 100g 5B5a 6P2b		0.1	00		0.2	- c	 1.7	9.	2.5	φ φ Ν ο	2.5	2.7	2.3	i c	0 4	4 4	2.2	1.9	1.9	1.9
Table 2. Data from Helena No. Letter/number notation The reads	MH4OAC Nextr. Mg (meq/100g) 5B5a 6O2d	. :	2.1	C. 6		2.3	4 4 4 4		4.1	9.4	4 4 80 K	က	9. 6.	3.5	C			3.6	3.6	3.6	3.8
Table 2.	NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC Str. Ca extr. Mg extr. Na extr. K extr. Cay 15 meq/ meq/ meq/ meq/ Sum bar 100g 100g 100g 100g Bases 8D1 5B5a 5B5a 5B5a meq/ 6N2e 6O2d 6P2b 6Q2b 100g	 >	6.9	2.3) i	2.8	4. r. 9. 8.	 6.7	6.7	œ (80 60 CO F	7.5	7.1	7.3	•	o 0 0 0	7.2	7.1	7	6.9	7
	ratio/ clay 15 bar 8D1	 ;	0.72	0.49))	0.55	0.65	 0.67	99.0	0.61	0.61	0.72	0.73	0.71				0.84		0.74	69.0
	ratio/ clay OBC 8D1		1.1	0.47		0.62	0.86	 0.89	0.89	0 8	6/0	0.98	1.03	1.01		.03		1.3	1.24	1.23	1.18
	horiz. desig.		A AB	BA BW2			E E					1	BC2				5 පි		2	2	7
	horiz. base (cm)		10	67)	110	175	200	233	266	300	349	385	421				555		609	636
	horiz. top (cm)		0 0	40	;	92	1 + 1 - 0 - 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	175	200	233	200	325	349	385		1 4 4	489	513	555	œ	609

Table 2. Data from Helena No. 2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.

### ##################################	4 6.9 2 6.8	7.2 7.3 7.2
PPH 201M 201M 201M 201M 201M 201M 201M 201M	+ + 0	
0 - 8	4.	7.4
PH H2O 8C1f 7.99 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 6.7	7.9 7.9 7.9
CO3 A 2 2 2 3 8 6 19 1 13.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16.1 16.6 14.1	23.5 27.8 19.2
والمستواري بشرور ومستشرو مشرو بشرور المستواري والمستواري والمستواري والمستواري والمستواري والمستواري والمستواري	476.7 482.6 469.9	772.4 0 625
Base Sat (sum) in pct 5C3 93 93		
A sat		: : : :
08C + Al) 5A3b		
OBC (NH4O AC) AC) AC) AC) Meq / 1000g / 11.5 B B B B B B B B B B B B B B B B B B B	ယ် ယ် က ထဲ ထဲ ထဲ	5.8 5.1 6.8
OBC Sum Cats meq/ 100g 5A3a 114.8		
extr. Al 100g 6G9b 6G9b		
acidity e meq/ 100g 6H5a 6H5a 6H5a 0.7 7 7 1.6 0.8 1.3 1.5 0.6 0.6 0.6 0.8 1.5 0.8 1.5 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	t − v 0 si	0.7
NH4OAC extr. Sum Bases meq/ 100g 13.2 12.7 12.7 12.7 26.7 33.5 39.6 38.2 38.2 39.6 39.6 39.6 39.6 39.6 40.7 40.7 40.3	4 1.5 39	44.8 54 42.5
AH4OAC extr. K meq/ 100g 100g 6Q2b 6Q2b 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ກ ຄ ໙ ວ ໐	0.2
NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC extr. Na extr. Na extr. Na extr. Na extr. Na extr. Na for the control of the control	9 9 9	0.6
MH40AC N meq/ 100g 5B5a 602d 602d 100g 17.2 17.2 17.2 17.1 17.2 17.1 17.1 17.1	1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	17.5 13.3 15.5
H4OAC N meq/ 100g 5B5a 6N2e 6N2e 6N2e 17.3 7 7 7 14.3 14.3 19.6 19.6 19.6 19.7 19.7 19.7 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	20.8 21 19.7	26.5 40.1 26.3
clay 15 bar bar bar 8D1 0.71 0.77 0.72 0.85 0.72 0.85 0.75 0.75 0.99 0.99 0.99 0.95 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7	0.6 0.64 0.64	0.77 0.82 0.66
	0.89 0.99 0.95	0.79
Horiz. C.	C 23 C 23 C 23	C24 C24 C25
horiz. base (cm) (cm) (cm) (cm) 722 744 781 808 834 874 908 908 1124 1172 1210 1256 12556 12576	1311 1347 1383	1408 1434 1467
horiz. top (cm) 636 663 722 744 744 781 781 781 781 783 781 781 781 781 781 781 781 781	1276 1311 1347	1383 1408 1434

,	PH KCL 1N 8C1g	6.9	7.2	7.3	7.1	7.7	7.7	7.2	7.2
s a	PH CaCl2 .01M 8C1f	7.3	7.3	7.3	7.3	27 27 27 27 27 27	7.2	7.2 7.3 7.3 7.3	7.5
Arkansa	рН H2O 8С1f	7.9	8 7.9	7.9	7.9	6. 7 6. 7 6. 7 6. 7	7.9	7 8 8 7 8 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9	7.8
heastern	CO3 pct <2mm 6E1g	14	18.6 26.8	22.8	15.2	6.41 6.41 1.6.1 1.6.1	15.6	17.4 16.8 16.7 16.6	19
2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. r is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	Base Sat (NH40AC) meq/ <100g 5C1 (477.5	643.3	840	512.3	404.8 475 520 524 524	513.9 550.7	479.1 598.5 441.2 401.6	581.1
elena No. 2 core at Phillips Bayou, upslope from quarry cut-face, south end of Crowleys Ridge, r notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods Where data elements are blank, no analysis was run.	Base Sat (N (sum) in (pct 5C3)		<u> </u>		.i			:	
h end of Lincoln, iptions o	Al sat		aan waxaa ay aa ah				:		
atory in the description yeis was	OEC (bases + Al) 5A3b								
rry cut-fe ey Labor r comple , no ana	OEC (NH40 AC) meq/ 100g	6.7	6.7	Ø	8.1	8.3 7.7 7.7	7.2	6.2 6.2 7.3 7.2 7.2	5.3
from qua toil Surve 1992) fo	OEC Sum Cats meq/ 100g		• •						
hillips Bayou, upslope from quarry cut-face, south enused by the National Soil Survey Laboratory in Lincot to Soil Survey Staff (1992) for complete description Where data elements are blank, no analysis was run.	extr. Al meq/ 100g 6G9b	: ;	!						
Bayou, by the Noil Surve	acidity meq/ 100g 6H5a	0.1	0.1	0	0	0.3 0.7 0.7	0.4	0 0 0 0 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0
at Phillips ides used ferred to S	OAC NH4OAC T. K extr. 6 eq/ Sum 100 Bases 35a meq/ 1200	38.2	43.1 53.3	50.4	4. 	33.6 39.39 37.4.	37	32.1 40.1 30 24.9 25.2	30.8
No. 2 core tion are co ader is rel	NH4OAC.N extr. K meq/ 100g 585a 6Q2b	0.2	0.3	0.1	0.2	0.0	0.2	2.0000000	0.1
Helena Iber nota The re	WH4OAC extr. Na meq/ 100g 5B5a 6P2b	0.5	0.6	0.3	0.2	00000	0.2	0 0 0 0	0.3
Table 2. Data from Helena No. Letter/number notation The reade	NH4OAC NH4OAC<	18	14.4	10.8	15.5	13.9 16.2 17.2 16.1	16 15.8	13.6 12.7 10.2 10.8	8.3
Table 2.	NH4OAC N / ratio/ extr. Ca e clay 15 meq/ bar 100g 8D1 585a 6N2e	19.6 32.3	27.8 42.9	39.3	25.6	22.4 22.4 21.7 21.7	20.6	26.8 16.8 13.8 13.8	22.1
	ratio/ eclay 15 bar 8D1	0.62	0.63	0.7	0.63	0.67 0.65 0.55 0.63	0.71	0.61 0.66 0.58 0.58 0.73	0.98
	ratio/ clay c OEC 8D1	1.01	0.94	0.94	66.0	66.0 6.0 6.0 8.0 0.0	0.91	0.83 0.87 0.81 0.75 0.9	1.18
	horiz. desig.	C25 C26	C27 C28	C28	C28	C 230 C 330 C 330 C 330	080	C31 C32 C32 C33	682
	horiz. base (cm)	1501	1589 1635	1682	1717	1752 1792 1832 1872 1912	1951 1993	2035 2073 2111 2180 2219	2257
	horiz. top (cm)	1467 1501	1540 1589	1635	1682	1717 1752 1792 1832 1872	1912	1993 2035 2073 2111 2180	2219

	elemental K20 pct of <.002mm		+	:		1.6	÷		<u>.</u>					****	1.3			1.1					1.5
	elemental elemental Fe2O3 K20 pct of pct of <.002mm <.002mm 7C3 7C3			_		10.9			12.2		-			÷	12.2			12.2					7.6
sedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	elemental ele Al2O3 F pct of p <.002mm <.C		· · · · · · · · · · · · · · · · · · ·	:	ş	19.					<u> </u>				13			-	+	:			12
Where data elements are blank, no analysis was run.	total clay (<.002mm) mineralogy x-ray diffraction 7A2i	Peoria Loess	VB 3KK 3MI OMT 107 1			MT 3VR 2MI 2KK 2			MT 3VB 2MI 2KK 2MM 1						MT 3MI 2KK 2VC 1			MT 3MI 2KK 2GE 1MM 1		:			MT 3MI 2KK 2VR 1
	csi (0.02-0.05mm) mineralogy (optical) grain count in pct 7B1a				QZ56 FK24 OW11 FP4 HN1 MS1	B11 OP1 AM1 PH1 GStr ZHtr IMtr 013 POtr FEtr		QZ45 FK26 OW14 FP7 HN2 MI2	OFT MST AMT ZHILTIMIL BLILTGSIT					QZ53 FK19 OW14 FP8 OP2 HN1 BT1 PR1 MS1 AMI' MIL' POI' FEI'		1	QZ49 FK19 FP13 OW11 HN3 MIZ BT1 OP1 MStr PRtr ZRtr POtr TMtr	.011 FEtr GNtr					QZ51 FP15 FK14 OW13 PR2 OP2 MS1 HN1 BTir TMir Mitr AMir POir 011 FEIr GSir ZRir GNir
,	air dry:oven dry		1.009	1.008	1.011	1.013	1.018	5	1.015	1.015	1.016	1.017	1.015		1.012	1.012		1.011	1.012	0.01	1.011	1.011	1.011
	water content 15bar pct of of <2mm 4B2a		7.2	7.6	8.5	9.5	12.4	2	11.4	10.4	11.8	12.4	0.0 9.0		8.4	8.3	, roo , g 42400	7.7	œ	7.7	0.0	7.1	
	water content 2bar pct of <2mm		13.3	13.3	14.6	14.7	18.5	o.	17.2	16.5		20	17.3	÷	13.4	13.3		12.5		12.4	10.8		
	horiz. desig.		A a	8 A	BW2	E/8	BT1	_	BT2	BT3	втз	BT3	<u> </u>		BC2	BC2		5	5	3 8	3 2	2	3
		!	10	67	92	110	148	-	200	233	266	300	325	•	385	421		455	489	513	582	609	636
	horiz. top (cm)	· ś	0 5	40	29	92	110	- + 0	175	200	233	266	325		349	385	•	421	455	984	555	585	609

water water content a content content content a 4B2a 4B2a 4B2a 10.9 6.8 1. 11.2 6.6 1. 9.3 5.8 1. 8.8 5.5 1. 7.1 1. 7.4 1. 7.2 1										
663 C4 10.9 6.8 1.011 772 C6 6. 1.011 774 C7 80. C5 11.2 6.6 1.011 774 C7 80. C5 1.008 808 C9 8.8 5.5 1.008 808 C9 8.8 5.5 1.008 808 C10	horiz. base (cm)		water content 2bar pct of <2mm 4B1a	water content 15bar pct of <2mm 4B2a	air dry:oven dry	csi (0.02-0.05mm) mineralogy (optical) grain count in pct 7B1a	total clay (<.002mm) mineralogy x-ray diffraction 7A2i	elemental AI2O3 pct of <.002mm		elemental K20 pct of <.002mm
703 C5 11.2 6.6 1.011 74.2 C6 6.7 1.016 74.4 C7 9.3 5.8 1.006 80.8 C9 8.8 5.5 1.009 80.8 C9 8.8 5.5 1.009 80.8 C9 8.8 5.5 1.009 80.8 C1	99		10.9	6.8	1.011					-
722 C6 6.7 1.01 744 C7 5.3 5.8 1.008 808 C9 8.8 5.6 1.008 808 C9 8.8 5.5 1.009 807 AJ C10	663 703		11.2	9.9	1.011					
744 C7 9.3 5.8 1.008 808 C9 8.8 5.5 1.009 0.237 DL20 FP18 FK15 OW6 PR2 834 C10 874 C11 875 C12 875 C12 876 C12 877 C12 C12 877 C12 C12 877 C12 C12 878 C12 878 C13 C12 C12 878 C13 C12 C13 C12 FP11 OW10 HN3 942 C12 956 C13 957 C13 C14 958 C10			ļļ.	6.7	1.01		- :	· · · · · · · · · · · · · · · · · · ·	:	
10 0.8 8.8 5.5 1.008 9.8 9.5 1.008 9.8 9.5 1.008 9.8 9.5 1.008 9.8 9.5 1.009 9.8 9.8 9.5 1.009 9.8			6.0	5.8	1.008					
2237 DL20 FP18 FK15 OW6 PR2 3.4 C11 3.6 1.008 MSIT TMIT ZRIT GNIT 942 C12 7.1 1.011 2246 FK13 DL12 FP11 OW10 HN3 942 C12 7.4 1.012 AMF BTIT GNIT 942 C13 943 C13 944 C11 7.1 1.011 2246 FK13 DL12 FP11 OW10 HN3 945 C13 969 C13 973 1.014 973 MT 3WR 2ML 2CL 1GE 1 974 C13 975 1.009 1075 C16 975 1.009 1076 C16 1077 C21 1078 C21 1078 C21 1078 C21 1078 C21 1078 C22 1078 C22 1078 C23 1078 C23 1078 C23 1078 C24 1078 C24 1078 C25 1078 C25 1078 C25 1078 C27 DL33 FK18 FP6 OW3 AM1 1078 C24 1078 C27 DL33 FK18 FP6 OW3 AM1 1178 C24 1078	744 78	.i	a		1.008					
834 C10 5.8 1.008 MStr TMrr ZRtr GNtr	3) ;	2		QZ37 DL20 FP18 FK15 OW6 PR2 OP1 AM1 GStr HNtr BTtr Mitr FEtr		** * ***		
874 C11 6.4 1.011 QZ46 FK13 DL12 FP11 OW10 HN3 908 C12 7.1 1.011 QZ46 FK13 DL12 FP11 OW10 HN3 942 C12 7.4 1.012 AMIT BTIT GSIT MIIT TMIT ZRIT 969 C13 8 1.012 AMIT BTIT GNIT 1001 C14 9.3 1.014 DL12 OW11 FP6 HN3 1033 C14 6.7 1.008 DR22 FK19 DL12 OW11 FP6 HN3 1060 C15 6.7 1.009 DR3 MI2 OP1 MS1 BT1 AMIT TMIT 1079 C16 7.2 1.009 DR3 MI2 OP1 MS1 BT1 AMIT TMIT 1172 C18 6.8 1.01 DR3 MS1 PRIT FET 1174 C17 7.6 1.011 DR3 MS1 PRIT FET 1172 C18 6.8 1.01 DR3 MS1 1276 C21 6.3 1.009 DR3 FK18 FP6 OW3 AM1 131 C22 5.5 1.009 DR3 FK18 FP6 OW3 AM1 1434 C24 7.2 1.006 DR4 FET 1434				5.8	1.008	MStr TMtr ZRtr GNtr	MT 3VR 2MI 2KK 2	8.2	7.9	1.2
908 C12 7.1 1.011 Q246 FK13 DL12 FP11 OW10 HN3 OP3 MS1 PR1 GStr Mitr TMtr ZRtr 942 C12 7.4 1.012 AMtr BTtr GNtr 969 C13 8 1.012 8 1.012				6.4	1.01					
C12 C13 B 1.012 B 1.012 C14 C14 C14 C15 C14 C15 C15 C16 C16 C17 C16 C17 C17 C18 C18 C20 C20 C21 C22 C23 C23 C24 C24 C24 C24 C24 C24 C24 C24 C25 C25 C26 C27 C27 C28 C28 C28 C28 C28 C29				5		QZ46 FK13 DL12 FP11 OW10 HN3 OP3 MS1 PR1 GStr Mit TMtr ZBtr	i			
969 C13	945			7.4	1.012	AMIR BTIR GNIR	MT 3MI 2KK 2CL 1GE 1		•	
1001 C14 9.3 1.014 1033 C14 6.7 1.008 Q242 FK19 DL12 OW11 FP6 HN3 PR3 MI2 OP1 MS1 BT1 AMIr TMIr 1060 C15 6.1 1.01 GStr ZRtr GNtr FCtr 172 C18 6.8 1.01 1210 C19 5.5 1.009 1256 C20 5.9 1.009 1276 C21 6.3 1.008 1311 C22 5.8 1.008 1383 C23 5.6 1.007 1408 C24 FK19 DL12 OW11 FP6 HN3 PR3 MIC OW11 FP6 HN3 PR3 MIC OW11 FP6 HN3 PR3 FK18 FP6 OW3 AM1 HN1 OPtr Mitr GNtr BTtr FEtr 1408 C24 5.6 1.006 ZRtr GAtr POtr	96	1.		8	1.012					
1060 C15	100			00.0	1.014					
PR3 MI2 OP1 MS1 BT1 AMIT TMIT 1060 C15 6.1 1.01 GStr ZRtr GNtr FCtr 7.2 1.009 1124 C17 7.6 1.011 1124 C17 7.6 1.011 1124 C17 7.6 1.011 1125 C18 6.8 1.011 5.5 1.009 12.5 C21 6.3 1.008 1.008 1.37 C23 5.8 1.008 5.9 1.008 1.383 C23 5.6 1.007 C237 DL33 FK18 FP6 OW3 AM1 HN1 OPtr Mitr GNir BTr PRir FEtr 14.08 C24 5.6 1.006 ZRtr GAtr POtr 14.34 C24 4.9 1.005 ZRtr GAtr POtr	ဂ် ၁	1		\ . •	10000	0242 FK19 DI 12 DW11 FP6 HN3				
1060 C15 6.1 1.01 GStr ZRtr GNtr FCtr 1079 C16 7.2 1.009 1124 C17 7.6 1.011 1210 C19 5.5 1.009 1276 C21 6.3 1.009 1311 C22 5.9 1.008 1347 C23 5.6 1.007 1383 C23 5.6 1.007 1408 C24 5.6 1.006 28 1.006 28 1383 C23 5.6 1.007 1434 C24 4.9 1.006										
1079 C16 7.2 1.009 1124 C17 7.6 1.011 1172 C18 6.8 1.01 1210 C19 5.5 1.009 1256 C20 5.9 1.009 1311 C22 5.8 1.008 1347 C23 5.5 1.008 1383 C23 5.6 1.007 1408 C24 5.6 1.007 1408 C24 5.6 1.005 1507 DL33 FK18 FP6 OW3 AM1 1408 C24 5.6 1.005 1608 C24 7.007 1707 C23 7.008 1707 C23 7.	106			6.1	****		MT 3MI 2KK 2CL 1QZ 1	***		
1172 C18 6.8 1.001 1210 C19 5.5 1.009 1256 C20 5.9 1.009 1276 C21 6.3 1.008 1347 C23 5.6 1.008 1383 C23 5.6 1.007 1408 C24 5.6 1.007 1408 C24 5.6 1.006 ZRII GAIT POIT				7.2	1.009					
1210 C19 5.5 1.009 1256 C20 5.9 1.008 1311 C22 6.3 1.008 1347 C23 5.5 1.008 1383 C23 5.6 1.007 1408 C24 5.6 1.007 1408 C24 5.6 1.006 ZRII GAIT POIT 1434 C24 4.9 1.005				. 69	1.01					
1256 C20 5.9 1.009 1276 C21 6.3 1.008 1311 C22 5.8 1.008 1347 C23 5.5 1.008 1383 C23 5.6 1.007 1408 C24 5.6 1.006 ZRtr GAIT PRIT FEIT 1408 C24 5.6 1.006 ZRtr GAIT POIT				5.5	1.009		MT 3VR 2MI 2KK 2			
1276 C21 6.3 1.008 1311 C22 5.8 1.008 1347 C23 5.5 1.008 1383 C23 5.6 1.007 1408 C24 5.6 1.006 ZRtr GAtr POtr 1434 C24 4.9 1.005	1256				1.009	:				
1311 C22 5.8 1.008 1347 C23 5.5 1.008 1383 C23 5.6 1.007 1408 C24 5.6 1.006 ZRtr GAtr POtr 1434 C24 4.9 1.005	_				1.008					
1347 C23 5.5 1.008 1383 C23 5.6 1.007 Q237 DL33 FK18 FP6 OW3 AM1 HN1 OPtr Mitr GNtr Pftr Fetr 1408 C24 5.6 1.006 ZRtr GAtr POtr 1434 C24 4.9 1.005	<u></u>				1.008			:		
1303 C23 C23 C23 C237 DL33 FK18 FP6 OW3 AM1 1408 C24 5.6 1.006 ZRtr GAtr POtr 1434 C24 4.9 1.005	134	i			1.008			:		
1408 C24 5.6 1.006 ZRtr GAtr POtr 1434 C24 4.9 1.005	Ó			o .		0237 DI 33 EK18 EP6 OW3 AM1				
1408 C24 5.6 1.006 ZRtr GAtr POtr 1434 C24 4.9 1.005		****				HN1 OPtr Mitr GNtr BTtr PRtr FEtr				
1434 C24 4.9 1				5.6	1.006	ZRtr GAtr POtr	MT 2MM 2MI 2GE 2CL 1	:		:
				4.9	1.005			:	-	:

ų.	elemental elemental elemental AI2O3 Fe2O3 K20 pct of pct of pct of <.002mm <.002mm <.002mm 7C3 7C3 7C3					<u>.</u> i			<u>.</u>								
ical ions of	elemental AI2O3 pct of <.002mm			£			i i i					:					
Letter/number codes are used by the National Soil Survey, Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	total clay (<.002mm) mineralogy x-ray diffraction 7A2i	MT 3MI 2KK 2MM 1 MT 3MI 2KK 1QZ 1	MT 3MI 2KK 2MM 1QZ 1		MT 3MI 2KK 2MM 1GE 1	MT 3MI 2KK 2MM 1GE 1	MT 3MI 2KK 2VR 2	MT 3MI 2KK 2QZ 1					MT 3MI 2KK 2VR 1GE 1		MT 3MI 3KK 2VR 1GE 1	MT 4KK 3MI 2QZ 1	
these methods. Where data elements are bla	csi (0.02-0.05mm) mineralogy n. (optical) grain count in pct 7B1a	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	QZ40 DL26 FK18 OW5 FP4 MI2 MS1 OP1 HN1 AM1 PRtr GStr FEtr 6 CLtr ZRtr GNtr TMtr BTtr	4. - 0746 DI 04 EV44 ED7 DIME UNIT		OP2 HN1 MI1 PRIt ZRIt AMIt GStr 1.007 BTtr TMIt GNIr OZ40 FK22 DL17 OW12 FP4 PR2		ထားထ		QZ47 DL23 OW14 FK9 FP4 PR1 OP1 HN1 MStr Mltr AMtr BTtr GStr		Q240 DL25 FK14 OW10 FP6 HN2			7		MS1 OP1 ZR1 Mitr AMtr BTtr GStr
	air dry:over dry	1.008	1.006	1.004	1.004	1.00	1.00	1.008	1.008		1.008	2. -	1.00	1.007	1.007	1.005	
	water air content air 15bar pct dry.oven of <2mm dry 482a	4 4 9 8	4.5	3.9	4.5	. 6. 6.	5.6	დ. 4 დ. მ			5.6		4.9	5.1	. 4 . 0	4.6	,
	water content 2bar pct of <2mm 4B1a					:				ne della 1			:		:		
	horiz. desig.	C25 C26	C27	C28	C28	C28	C28	တ္တ တို့ တို့	030	}	080	3	31	85.8	33.58	C34	
	horiz. base (cm)	1501	1589	1635	1682	1717	1752	1792	1872		1951):):):	2035	2073	2180	2219	
	horiz. top (cm)	1467	40	1589	1635	1682	1717	1752 1792	1832	1	1912) ·	1993	2035	2111	2180	

	clay CEC OEC 8D1	-	1.29	0.95	1.05	1.03	0.89	0.87		0.85	0.88	0.89	0.9	0.88	0.9	0.93	0.94	0.91	0.89	0.86
			0.1	0.1	0.1	0.1	0 0	0.1		0	0	0	0	o	0	0	··· o	0	0	0
	dith-cit c		0.1	0.1	0.1	0 0	0.0	0.1		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	ith-cit of pct c2mm; 6C2b		0.6	0.5	4.0	0.5	0.7	0.7		0.8	0.8	0.5	0.5	0.5	Ξ	6.0	0.9		-	
dures.	total C d pct<2 F mm 6A2d		2.12	2.34			1.91	1.23		0.55			0.47			0.14		0.13		
al proceis. S.	orgn C pct 6A1c		0.08	0.1	i.		0.09	0.17		0.2		0.38		0.3	i	0.12	0.11			
analytici method	vcs t1.0-2.0 pct of <2mm 3A1		0.7		A		- 0	0		0				0.1	: :		0	Ö	0	o
NB for of these			0.5	0.1	0.1	0.1	0 0	0.1		0.1	0.1		0.1			0.1	March 1070	0.1		
Lincoln, riptions s run.	ms .255 pct of <2mm 3A1		0.3	0.1	0.1		5 6	0.1		0.1	0.1	0.	0.1			0.1		0.1		
ratory in ete desc Iysis wa:	fs .1- .25 pct of <2mm 3A1		0.1	0.1		0 (0.1		0.1			0.1		<u>.</u>	0.3		0.3		·
ey Labor r comple , no ana	vfs 0510 pct of <2mm 3A1	SS	0.6		:		0.9	N	#	Ξ	-	_	1.6		i	-		6.		
Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	csi .02- .05 pct of <2mm	Peoria Loess	50.2 44.7	46.6	·	4	4 4 7 4	45.4	Roxana Sill	46.9	46.1	47.8		48.7		:		51.2		
ational S y Staff (ements a	fsi .002- .02 pct of <2mm 3A1	B	41.3	4	. 43	42.9	4 8. 6.	39.8	Œ	37.1	36.2	34.4	35.3	34.9	34.2	35	32.6	32.5	32.3	33.2
y the N. oil Surve data elk	CO3 cly .002 pct of <2mm		0.0 0.6	0.3	9.0		9.0													
s used t ed to Sc Where	fely 0 .0002 f pct of 1 <2mm 3A1		3.5	5.4		5.0		9.6		10	11.6	11.6		9.7		6.3	9.6		9.8	
r notation are codes u The reader is referred V	s 5-2. ct o 2mn 3A1		1.2				 8			6.		:	8.		:	2.2		2.3		
otation a reader	si .002- .05 pct of <2mm 3A1	• •	91.5				88 88 8.3 8.3			84	82.3	82.2	82.8	83.6	82.9	8		83.7		
umber π The	cly .002002 pct of of <2mm <2mm <3A1 3A1		6.3		7.4	7.7	10.6	12.6		14.7	16	16	15.4	14.6	13.3	13.8		14		
Letter/nı	horiz. thk. (cm)		8 8 8	က	44	25	30.0	35		17	(1)		23		,	44		34		ļ
	Color		2.5Y6/4 2.5Y5/2	2.5 Y 5/2	2.5 Y 5/2	10YR6/3	10YR5/3 10YR5/3	10YR5/3		10YR4/3	10YR4/2	10YR4/2	10YR3/2	10YR3/2	10YR5/3	2BT1 10YR5/3	10YR6/3	2BT2 10YR6/3	10YR6/3	10YR6/4
	horiz. desig.		υυ	ပ	O	ပ	၁ ပ	ပ		2A1	2 A 2	2A3	2A4	2A5	2BT1	28T1	2BT2	2BT2	2BT2	2BT3
	horiz. base (cm)		245	159	115	06	35 35	0		-17			-85	96-	140	184	-218	-252	-285	-322
	horiz. top (cm)		281 245	202	159	115	90 65	35.		0	-17	-43	-62	-85	96-	-140	-184	-218	-252	-285

	ratio/ clay CEC 8D1	0.86	0.8	0.75	2	0.83	0.74	0.71	0.62		0.53	0.55	0.38	0.0	0.58	0.67	0.71	0.73	77
	dith-cit Mn pct <2mm 6D2a	0	0	0 0		0	0	o.	0		0.1	9.0				0.1	0.1	0.1	
	dith-cit of Al pct lessen c2mm 6G7a	0.1	0:1	0.0	- ^{;"}	0.1	0.1	0.1	0.1		0.1	0.2	0.5	יי ס כ	- 0	0.1	0.1	0.1	
	Service and the service of the servi	Ξ	0.9	= =	<u>:</u>	1.2	· ··· - ·	1.3	9.1		1.8	2.1	2.6	- c	9 -	1.7	1.6	4.	
lures.	total C dith-cit pct<2 Fe pct mm <2mm 6A2d 6C2b					0.18			0.19			0.14					0.05	0.04	
sed by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures to Soil Survey Staff (1992) for complete descriptions of these methods. There data elements are blank, no analysis was run.	orgn C pct 6A1c	0.09	0.08	0.1		0.13	0.16	0.17	0.11		0.09	0.09	0.09	0.0	0.0	0.04	0.04	0.04	. (
analytical methods.	vcs 1.0-2.0 orgn C pct of pct <2mm 6A1c 3A1	0	0	0.1	5.	0.1	0	0.1	0.3		0.1	0.1	0.1	S	0	0	0	0	: : :
NB for a	cs .5- 1.0 pct of <2mm 3A1	0.1	0	0.0	-:	0.2		0.5	0.3		0.2	4.0	0.1	 - c	0	0.1	0.1	0.1	:
Lincoln, iptions o	ms .255 pct of .22mm 3A1	0.3	0.3	0.0	2	0.4	0.1	0.3	0.4		0.3	0.7	0.5	- + - c	- 0	0.1	0.1	0.1	
used by the National Soil Survey Laboratory in Lincoln, NB for analytical to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.		4.0	0.3	0.3		0.3	0.2	0.3	0.5		0.3	9.0	0.2	 - c	0 0	0.1	0.1	0.1	1
y Labora comple no anal	vfs 5510 oct of s2mm 3A1		1.8		.	-	1 .8	1.5	2.7	SSS	1.2	=	0.8	9 6	- 0	0.4	0.3	0.3	*
oil Surve 1992) foi re blank,	fsi csi .02- .002- 05 pct .0 .02 pct of of .4 .2mm .2mm .3A1	48.4	47.8	44.9	,	44.9	45.9	44.6	43.1	Loveland Loess	41.8	35.3	33.9	400.	38.1	40.4	39.4	38	Ť
utional S. y Staff (ments a	fsi .002- .02 pct of <2mm 3A1	36.9	35.5	37.8	o.	37	35.1	35.2	33.1	Love	33.8	31.9	33.2	υ. /υ υ. ο	38.1	39.9	42.1	45	:
Letter/number notation are codes used by the National The reader is referred to Soil Survey Staff Where data elements	CO3 cly .002 pct of <2mm 3A1			un verbrene		:							:		100				:
s used by ed to So	fcly 0002 pct of 22mm 3A1			•			***************************************									:		***************************************	**
r notation are codes u: The reader is referred V	si s fcly .00205-2.0 .0002 f .05 pct pct of pct of n <2mm <2mm <2mm 3A1 3A1	-	2.5	9 - 6		2.3	2.2	4.	4. 2.		8	3.1	- 0	φ c ⊃ +	. 0	4.0	0.3	0.3	
reader	si .002- .05 pct of <2mm 3A1	85.3	83.3	82.7	0.	81.9	8	79.8	76.2		75.6	67.2	67.1	73.7	76.2	80.3	81.5	83	*
ımber nota The n	cly .002 pct of <2mm 3A1	12.8	14.2	15.4	<u>.</u>	15.8	16.8	17.8	19.6		22.4	29.7	31.7	2.0.0	23.4	19.3	18.2	16.7	: 1
Letter/nu	horiz. thk. (cm)	28	2 8	66	0	6:	36	56	29		33				3. K	42	23	34	!
	COLOR	10YR6/4	10YR6/4	7.5YR5/4	4/0U10:7	7.5YR5/4	10YR4/3	10YR4/3	10YR4/4		7.5YR5/4	7.5YR4/6	7.5YR4/6	7.57 H5/6	7.5YR4/6	7.5YR4/6	7.5YR4/6	10YR5/4	
	horiz. desig.	2BT4	2BT4	2BT5	<u>0</u>	2BT5	2BT	2AT	2ABT		3BT1	3BT2	3BT2	2013	3BT4	3BT5	3BT5	-877 3BCT	
	horiz. base (cm)	-387	de la	-454	0 1 1	-532	-568		-623		-656		-703	761	-796	-820	-843	-877	4
	horiz. top (cm)	-359.	-387	-415		-493	-532	-568	-594		-623	-656	-680	799	-761	-796	-820	-843	

				Letter/nı	rable 3. umber nota The re		Data tor Frimips tion are codes us ader is referred V	used by d to Soii Where o	t quality the Nat Survey data elen	tional Sc Staff (1 nents ar	s, south to oil Surve 1992) for e blank,	y Labora comple no analy	s bayou quarry curracts, south end of crowleys intuge, southeastern Arkansas, used by the National Soil Survey Laboratory in Lincoln, NB for analytical proct of to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	e ,auge, e .incoln, i .incoln, o ptions o .nu.	Outrieas NB for a f these	stell Alkalisas analytical procedures. methods.	proced.	ures.				
horiz. top (cm)	horiz. base (cm)	horiz.	color	horiz. thk. (cm)	cly .002 pct of <2mm 3A1	si 002- 05 pct of c2mm 3A1	s fcly .05-2.0 .0002 pct of pct of <2mm <2mm	fcly 0002 oct of c2mm 3A1	CO3 cly 002 002 cld c2mm <	fsi co	csi .02- .05 pct . of . <2mm	vfs 0510 pct of <2mm		ms .255 1 pct of <2mm	cs .5- 1.0 pct 1 of <2mm	5- vcs total C pct 1.0-2.0 orgn C pct con pct con pct mm mm c2mm 6A1c 6A2d	orgn C. t		total C dith-cit dith-cit pct<2 Fe pct. Al pct mm <2mm <2mm 6A2d 6C2b 6G7a		dith-cit Mn pct <2mm 6D2a	ratio/ clay OEC 8D1
-946		-977 3C1	10YR5/4	<u>6</u>	13.3	85.5	1.2			43.2	42.3	-	0.1	0.1	0	0	0.02		1.2	0.1	0.1	0.85
-977 -1008 -1039	-977 -1008 -1008 -1039 -1039 -1069	30.1	10YR5/4 10YR5/4 10YR5/4	31.00	13.8	85.5 88.1 86.6	0.7	- +-+	· .	45 41.7 40.5	40.5 46.4 46.1	0.6	0.0	0.0	0.1	000	0.04	0.05		0.1	0.1	0.86 0.94 0.86
-1069 -1099 -1128 -1155	-1099 -1128 -1155	3022	10YR5/4 10YR5/4 10YR6/4 10YR6/4	30 30 27 27	8.5 1.0 1.2 2.1	89.4 90.2 87.4 87.8	2.1		· · · · · · · · · · · · · · · · · · ·	2 0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9. 4 9. 1. 4 9. 2. 8 8. 6	0.6	0.2	1.0	0.00	0.0	0.03 0.01 0.02 0.02	0.04	1.1	0.1	0.1	1.06 0.99 0.96 0.99
-1182	-1209	303	10YR6/4 7.5YR6/3	27	11.9	84.7	3.4 4.2			35.1 35.9	49.6 48.5	2.9	0.3	0.1	0.1	0.1	0.02	0.03	0.4	0.1	0.1	0.95
-1236 -1266 -1295	-1266 3C4 -1295 3C4 -1325 3C5	3C4 3C5 3C5	7.5YR6/3 7.5YR6/3 10YR6/4	0 0 0 0 0 0:	13.4 4.9 6.5 6.5	83.5 84.1 79.6	. 9 . 1	maja ya ali s a	4 4	32.7 29.4 29.7	50.8 54.7 49.9	0, 0, 10 10, 10, 10	0.2 0.3 0.3	0.00	0.1	000	0.02	0.04	0.7	0.0	0.1	0.85 0.89 0.87
-1325	-1325 -1355 - -1355 -1386 3	3C5 3C5	10YR6/4 10YR6/4	31	12.5	84.4	3.5	· •• •• :	· ·	31.33.1 Crowleys	53.4 51 Ridge	2.8 3.4 Loess	0.2	0.1	0.0	0.1	0.01	0.04	0.5	0.1	0.1	0.99
-1386 - -1423 - -1459 - -1525 -	-1423 -1459 -1525 -1554	4A 4C 4CT1 4CT1 4CT2	10YR6/4 10YR5/4 10YR5/4 10YR5/4 10YR5/4	3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10.1 10.6 11.1 1.0.8	86.8 83.7 85.9 7 95.8 63.7	3.7. 2.7. 2.6. 3.5. 2.6. 3.5. 3.5. 3.5. 3.5. 3.5. 3.5. 3.5. 3	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	50 xxx	33.4 30.9 30.1 27.6 24.6	53.4 52.8 54.1 8.6 6.8 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	21 4 51 4 51 51 51 51 52 52 52 52 52 52 52 52 52 52 52 52 52	0.2 0.6 0.8 1.7 1.3	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0.02 0.03 0.02 0.02 0.04	0.04	0.9 0.7 1.2 0.8	0 0 0 0 0	000000	1.05 1.05 1.05 0.94 1.03

	clay CBC 8D1	0.88 0.86 1.03	0.51 0.47 0.5 0.5	0.46
	_	0 0 1.0 1.0 1.0	0.1 0.1 0.1	0.1
<u> </u>		0.1	0.1	0.1
;	dith-cit dith-ci Fe pct Al pct <2mm <2mm 6C2b 6G7a	0.0 0.3 1.0 0.1	0.5	0.6
lures.	total C dith-cit pct<2 Fe pct mm <2mm 6A2d 6C2b		0.04.	
ansas proceo	orgn C pct 6A1c	0.04 0.03 0.01 0.01 0.02	0.02 0.03 0.03 0.03	0.03
tern Arka inalytical methods	vcs t 1.0-2.0 pct of <2mm 3A1	0 0 0	0.3 1.2 5.3	0.1
outheast NB for a f these	cs .5- vcs 1.0 pct 1.0-2.0 orgn C pct <2 of pct of pct mm c2mm 6A1c 6A2d 3A1 3A1 3A1	7.0 1.3 1.3 1.3 1.3	1.1 0.8 2.4 8.6	9.0
Ridge, S. incoln, iptions o	ms .255 pct of <2mm 3A1	12.6 21.6 22.6 32.5 29.7 29.9	24.3 19.2 21.4 19.1	vel 30.6
owleys for the control of the contro		23.7 33.8 44.2 51.7 56.2 54.7	46.9 36.4 27.7 37.6	and gra
nd of Cr. Labora complet no analy	vfs fs .10510 .25 pct pct of of c2mm <2mm	3.1 4.2 4.7 6.8	5.7 3.9 3.9	e sand
south ei il Survey 992) for e blank, i	csi .02- vfs .05 pct .0510 of : pct of <2mm <2mm 3A1 : 3A1	21.4 29.9 3 14.9 18.6 4 10.8 13.7 4 4.6 5.7 3.3 4.6 4 3 4.3 6 unnamed alluvium	8.1 16.8 18.7 8.7	leistocer 3.9
cut-face, ional Soi Staff (18 nents are	tsi csi .02- vfs fs .100205 pct .0510 .25 pct .02 pct of pct of of of c2mm <2mm <2mm <2mm 3A1 3A1	21.4 14.9 10.8 4.6 3.3 3	5.8 9.5 10.2 4.7	1.5
Table 3. Data for Phillips Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas nber notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procy The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	CO3 cly 002 pct of c2mm <		· · · · · · · · · · · · · · · · · · ·	Pliocene(?) and (or) Pleistocene sand and gravel 8.6. 1.5 3.9 2.6 50.4 3
is Bayou used by d to Soil	fcly 0002 oct of c2mm 3A1	www.	3.9	Plioce 8.6
or Phillip e codes referre	s tcly .05-2.0 .0002 pct of pct of <2mm <2mm 3A1 3A1	40.1 60.6 71.9 89.7 92.1	78.3 60.6 56.6 72	48
Data fa ation are reader is	si 102- 5 pct of 2mm	2.4.5 7.9 7.9 7.3	13.9 26.3 28.9 13.4	4.
Table 3. nber nota The re	cly .002 pct of .c <2mm -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.8 13.1 14.5 14.6	4.
Table 3. Data for Phillips Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	horiz thk. p	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 27 27 41	300:
	color	10YR5/3 10YR5/4 10YR5/4 10YR7/2 10YR7/2	7.5YB5/4 7.5YB4/6 7.5YB4/6 5YB5/8	SYR5/6
:	horiz. desig.			
:	horiz. P base d (cm)	-1607 4CT2 -1631 5CT -1656 5CT -1686 6C -1716 6C -1746 6C	-1756 6BT -1783 7BT1 -1810 7BT1 -1851 7BT2	1881
	horiz. h top t (cm) (-1581 -1607 -1607 -1631 -1631 -1656 -1656 -1686 -1686 -1716	-1756 -1783 -1783 -1810 -1783 -1810 -1810 -1851	-1851 -1881 <u>,</u> 8BC

	water conten 1 15bar pct of <2mm 4B2a		5.1	1	. u	5.5	9.6	6.5		7.3		8.8		9.7	8.8	& 4.		n (N 0		6.0	9.8	8.7	8.2	7.6
	water conten t 2bar t pct of <2mm		8.8		9.0	8.6				13.2		15.7		15.6	14.6	14.1		ر 4 د ت	2 6	2	13.8	13.7	13.3	12.8	11.5
	water conten t 1/3 bar pct of <2mm		28.8			29.5				32			.,,,,,,			29.7					29.1	· · · · · ·		28.3	
	bulk density oven dry g/cc 4A1h		1.53		1	1.55				1.49						1.53					1.53			1.56	- 1
es.	bulk bulk density 1/3 oven bar dry g/cc g/cc 4A1d 4A1h		1.48	··· ···		1.48				1.43						1.42				3	1.44	•		1.46	
ansas procedui	Atter- berg of limits PI pct <0.4m m 4F		*						•			11111								eritoria berena		:		:	
tern Arka nalytical prethods.	Atterberg berg limits LLpct <0.4m m 4F1									•		:					****								
outheast VB for ar these n	pH KCL 1N 8C1g		7.1		0 0 /	, 6. 6.	7	6.8		6.8		6.7		6.4	6.3	က် က		ים מים		?	6.3	6.3	6.3	6.2	6.2
Ridge, S incoln, N otions of run.	pH CaCl2 .01M 8C1f		7.4	· · · · · · · · · · · · · · · · · · ·	, r	7 .	7.3	7.2		7.2		7.4		7.2	7.1	7	1	- '			7	:	7.1	7	7
rowleys lory in L e descrip sis was	PH H20 8C1f		7.9	· · · · · · · · · · · · · · · · · · ·	0 Q	0. /	7.8	7.8		7.8		8.1		7.9	7.9	7.8		, I	. r	•	7.8	7.8	7.9	7.8	7.8
and of Control Complete	CO3 as CaCO3 pct<2 mm 6E1g		17		9.70			14.3		8.2		2.4						- ego-o-				:			
Table 3. Data from Phillips Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	Base Sat (NH4OAC) meq/ 100g 5C1		540.7		446.4	475.9	297.5	384		330.3		214.4		118.5	114.6	114.4	•	1.4.1	- T	<u>.</u>	112.2	111.8	112.4	111.7	116.2
uarry cut-fa e National . urvey Staff a elements	OEC (NH4OAC) meq/ 100g 5A8b	Peoria Loess	9.0		χο ι 4 ο	0. / 6. /	8.1	4.6		10.9	Roxana Silt	12.5		14.6	14.4	13.9	(27.8	7 0 0 0	0.3	13.1	12.7			6.6
Bayou q ed by th o Soil Si here data	OEC Sum Cats meq/ 100g	а.	i .		:			•••••••		*** ****				19.4	18.4	17.9	(7.0	4.0.4	3	16.5	16	14.6	13.2	12.5
Phillips codes us eferred to	acidity meq/ 100g 6H5a		:						• ****	~~~		1.5		2.1	6.	N	,	0 0	- 0	o. V	. 6.	1.8	_	0.8	
Table 3. Data from Phillips mber notation are codes us The reader is referred to W.	AC NH4OAC K extr. 9/ Sum 19 Bases 5a meq/ 2b 1009		43.8		37.5	37.6	24.1	36.1	,,	36		26.8		17.3	16.5	15.9		0.4.0	2 2	9 1	14.7	14.2	13.6	12.4	11.5
Table 3. umber no	AC NH4OAC Na extr. K / meq/ g 100g a 5B5a b 6Q2b		0.2		, v O		0.1	0.1		0.5		4.0		0.5	0.3	0 4			ກ ເ	†. •	0.3	4.0	0.3	0.3	0.2
Letter/n	WH4OAC extr. Na meq/ 100g 5B5a 6P2b		0.1		⊃: ₹	† 0	0	0		0.1		0.1		0.5	0.5	0.1		5 6	- · -	5	0.1	0.1	0.1	0.1	0.1
	NH4OAC NH4OAC extr. Mg extr. Na meq/ 100g 100g 5B5a 5B5a 6O2d 6P2b		12.6 15.2		1 0	17.1	5.4	16.4		16.3		10.9		5.6	5.1	4. 6.	•	4.4	-	† †	4.6	4.4	4.2	3.9	3.6
	NH4OAC: NH4OAC NH4OAC NH4OAC NH4OAC extr. Ca extr. Mg extr. Na extr. Sextr. Sextr. Na extr. Sextr. Sextr. Na extr. Sextr.		23		20.5	20.4	18.6	19.6		19.4		15.4		=	10.9	10.8	(жо с Оп с	ი ი ი ი			6.0		8.1	9.7
	ratio/ clay 15 bar 8D1		0.81	i (0.65	0.65	0.67	0.61		0.58		9.0		0.59	0.54	0.55	0	0.0	0.09	9		0.61			0.73
	horiz. top (cm)		281	. (202	115	06	65		35		0		-17	-43	-62	L	ကို မ	0 5	P	-184	-218	-252	-285	-322

	water conten t 15bar pct of <2mm 4B2a	8.8 9.9 9.4 2.8	8.6	9.9	10.6	12	16.1	15	13.4	4.	10.3
	water conten c t 2bar t pct of c <2mm · 4B1a	12.8 13.7 14.2	12.1	14.5	. 15	16.6	20.9	19.3	18.3	16.1	15 14 8
	water conten t 1/3 bar pct of <2mm 4B1c	30				:	26.5	·• · ·		100 -	
	bulk density oven dry g/cc 4A1h	1.51			· • • • • • • • • • • • • • • • • • • •	3	1.69				
lres.	bulk density 1/3 bar g/cc 4A1d	1.43		م نشد الشاء			1.55				
ansas procedu	Atter- berg limits PI pct <0.4m m 4F	8 8			. 10	\$	22	18			
stern Ark nalytical methods	Atterberg berg limits LLpct <0.4m m 4F1	2 4 0 0		37	24		39	36			
south end of Crowleys Ridge, Southeastern Arkansas Survey Laboratory in Lincoln, NB for analytical procedures. 92) for complete descriptions of these methods. blank, no analysis was run.	pH KCL 1N 8C1g	0000	6.3	6.3	6.4	6.4	4. 4	: : 		6.3	6 6.2
Ridge, Lincoln, riptions c	pH CaCl2 .01M 8C1f	~ ~ ~ ~ ·	6.9	6.9	6.9	6.9					6.9
Crowleys atory in te descri ysis was	1 pH H20 8C1f	7.7 7.8 7.7	7.6	7.5	7.6	7.6	7.7	i	ikii ay aba	9.2	7.5
end of (y Labora r comple no anal	CO3 as CaCO3 pct<2 mm 6E1g	ىقىد بىلەرلىق			·	r		-	ii		
ace, south Soil Surve (1992) fo: are blank,	Base Sat (NH4OAC) meq/ 100g 5C1	116.4 112.3 112.1	109.2	110.4	114.9	119.3	114.2	113.3	129.4	114	116.4
Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas of by the National Soil Survey Laboratory in Lincoln, NB for analytical processoil Survey Staff (1992) for complete descriptions of these methods.	OEC (NH4OAC.) meq/ 100g 5A8b	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.1	12.5	.5 12.1	11.9	16.2	1 1 5		12.9	12.2
Bayou q ed by th o Soil Si here dat	OEC Sum Cats meq/ 100g 5A3a	4 4 4 4 4 2 2 8	16.2	15.3 15.8	15.5	1 9 -	20.7	1 1	· .	16.5	15.7 14.4 15.3
Table 3. Data from Phillips Ember notation are codes use The reader is referred to Wh	acidity meq/ 100g 6H5a	o 4 0 0	-	C. 1-	-	6 0	2. c	. 0: . 0: 7:	2.5 - -6		2. 2. 4
Data froi ation are reader is	NH4OAC extr. Sum Bases meq/ 100g	12.8 13.2 13.2	14.3	13.8 14.4	13.9	14.2	18.5	17	17.6	14.7	13.2
Table 3. Data from Philiips E Letter/number notation are codes use The reader is referred to Wh	NH4OAC extr. K meq/ 100g 5B5a 6Q2b	0.00	0.3	e. o	0.3	0.3	0.0	0.3	0.0	0.1	0 0 0
Letter/n	NH4OAC extr. Na meq/ 100g 5BSa 6P2b	0.000	0.3	0.1	0.1	0.1	0.1	0 -	0.0	0	0.4
	NH4OAC extr. Mg meq/ 100g 5B5a 6O2d	6 4 4 6 4 - 3	8.	4 4 6 8	4.	Ŋ		6.7		6.3	5.7
	NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC extr. Ca extr. Mg extr. Na extr. K extr. meq/ extr. na meq/ meq/ meq/ Sum 100g 100g 100g Bases 5B5a 5B5a 5B5a meq/ 6N2e 6O2d 6P2b 100g	8 8 8 8 6 4 6 6	8	80 Q	8.8	8.9	11.4	10	8 8 6 4	8.3	7.6
	ratio/ clay 15 bar 8D1	0.64 0.62 0.61 0.59	0.62	0.59	0.54	0.54	0.54	0.59	0.57	0.63	0.6 0.67
	horiz. top (cm)	-359 -387 -415 -454	-493	-532	-594	-623	-656	-703	-761 -796	-820	-843 -877 -911

	water conten t 15bar pct of <2mm 4B2a	6.8	9.5 8.7 8.3	7.8 7.5 7.6 7.6	7.7	8.4 7.9 8.5	8.7	7.3 4.7 7.2 7.6 6.6
	water conten c t 2bar t pct of pct of 4B1a	÷ ÷	14.1	11.6	12.4	12.3	13	22 - 22
	water content 1/3 par pct of <2mm	****	· · · · · · · · · · · · · · · · · · ·		31.8			:
	bulk density oven dry g/cc 4A1h		· · · · · · · · · · · · · · · · · · ·	right right right	1.63	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
GS.	bulk bulk density density 1/3 oven bar dry g/cc g/cc 4A1d 4A1h		* * * * * * * * * * * * * * * * * * * *		1.41			
ansas procedui	Atter- berg limits PI pct <0.4m m 4F			* ·			- i.	
tern Arka nalytical nethods.	Atter- berg limits LLpct <0.4m m 4F1				4			
Southeas VB for ar	pH KCL 1N 8C1g	6.2	6.1 6.1	6.6 6.6 6.6	5.7	. 5.8 6.1	6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ridge, S incoln, I ptions or run.	pH CaCi2 .01M 8C1f	6.9	6. 6. 8. 8. 8. 8.	6.8 6.8 6.8	6.7	6.8 6.9	6. 9 6. 9	6.9 6.9 7 7 7 7
rowleys Itory in L e descri	PH H20 8C1f	7.5	4.7	7.3 7.4 7.5	7.3	7.4 7.4 7.5	7.5	7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
end of C y Labora complet no analy	CO3 as CaCO3 pct<2 mm 6E1g			. 4444				: : : : :
ie, south oil Survey 1992) for ire blank,	Base Sat (NH4OAC) meq/ 100g 5C1	111.5	111.9 110.7 110.7	113.3 113.3 109.2 109	109.7	112.2	117.7 108.8	123.6 111.7 117.1 120 120
Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas ed by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. O Soil Survey Staff (1992) for complete descriptions of these methods. There data elements are blank, no analysis was run.	OEC (NH4OAC) meq/ 100g 1	11.3	11.8 10.3 10.3	10.9 11.1	11.3	11.5	14.9 12.4 1 14.1 12.5 1 Crowleys Ridge Loess	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bayou q ed by the soil Su here data	OBC Sum Cats meq/ 100g	13.6	12.8 12.5 4.7	11.5 11.5 12.4 13.2	13.5	13.7	14.9 Crowl	14.1 13.1 13.1 12.1
Phillips codes us eferred to	acidity meq/ 100g 6H5a	-	1.1.6	1 2 3	- 2	0.7	0.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 3. Data from Phillips Letter/number notation are codes us The reader is referred to	wH4OAC extr. Sum Bases meq/ 100g	12.6	13.2	10.2 11.9 12.1	12.4	12.9 1.9	14.6	13.1 1.2.6 1.3.1 1.2.6
Table 3. Imber noti	WH4OAC rextr. Kmeq/100g 5B5a 6Q2b	0.1	0 0 0	0.00	0.0	e e e	0.0	- 2 2 - 2 6
Letter/nu	IH4OAC Nameq/ meq/ 100g 5B5a 6P2b	0.1	0 0 0	0.0	0.2	0 0 0	0.0	0 0 0 0 0 0
	MHOAC Nextr. Mg 6 meq/ 100g 5B5a 6O2d	5.8	5.2	4 4 7 7 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.5 5.7	5.7	6.3 8.8	αι α α 4 4 Θ - 4 σιοι α
	NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC extr. Ca extr. Mg extr. Na extr. K extr. meq/ extr. Na meq/ meq/ meq/ Sum 100g 100g 100g Bases 5B5a 5B5a 5B5a meq/ 6N2e 6O2d 6P2b 6Q2b 100g	9.9	6.7 9.8 9.8	ი ი ი 4 ი ი 4	6.4	6.8	7.7	6.0 6.7 7.0 6.7 7.0 6.0
	atio/ lay 15 bar 8D1	0.67	0.69	0.92 0.82 0.67 0.68	0.65	0.63 0.61 0.59	0.7	0.72 0.7 0.68 0.68 0.68
	horiz. cl top (cm)	-946	-977 -1008 -1039	-1069 -1099 -1128 -1155	-1182	-1236 -1266 -1295	-1325 -1355	-1386 -1423 -1459 -1525

	water conten t 15bar pct of <2mm 4B2a	Ω.	3.2	8. 4	- 6	0.8	_		4.1	9.9	7.6	7.3			4 0.	
	water water content content t 2bar t 15ba pct of pct of A2mm <2mm 4B1a 4B2a	6		4.7					6.4		10.3			L.	က [်] လ	
	water v conten c	22.1			-					14.9				····· ··		
	bulk density oven dry g/cc 4A1h	1.67			4	•				1.83		"				
es.	bulk bulk density density 1/3 oven bar dry g/cc g/cc 4A1d 4A1h	1.65				"				1.76					**	
ansas procedui	Atter- berg limits PI pct <0.4m m 4F					***		1								
tern Arka nalytical nethods.	Atter- berg limits LLpct <0.4m m 4F1															
Southeas NB for au	pH KCL 1N 8C1g	6.5		i	- 6			5.00	9.9	9.9	6.5	9.9				
Ridge, S Lincoln, I iptions o	PH CaCl2 .01M 8C1f	7.1			9 6			1	7	6.9	6.8	6.9		i	ε	
Crowleys atory in L te descri ysis was	PH H20	7.7	7.6	4. 7	6.9	7			7.6	7.5	7.4	7.5	_	p.	4.	
end of C y Labore comple no analy	CO3 as CaCO3 pct<2 mm 6E1g	0.1				الدارس		·	_				nd grave			
ce, south oil Surve 1992) foi ire blank,	Base Sat (NH4OAC) meq/ 100g 5C1	121.1	127.5	135.1	190	166.7	ε		140	124.6	118.1	120.3	e sand a	•	118.8	
Table 3. Data from Phillips Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas Letter/number notation are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures. The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	OBC (NH4OAC (100g 100g 15A8b	9.7	5.1	3.7	n –	1.2	unnamed alluvium	i	4	6.1	7.2	6.9	and (or) Pleistocene sand and gravel		4 ·	
you quar by the N oil Surve e data el	OEC Sum Cats) meq/ 1 100g 5	9.5	7.8	5.6	- 6	2.1	unname	Ş	6.2	9.8	9.5	8.8	ld (or) Pl		တ် တ	
illips Bay		0	1.3	9.0	o -	0.1		f.	9.0	-		0.5	$\overline{}$		ر هز	
Data from Phillips ation are codes us eader is referred t	AC acidity n meq/ss 100g 1/ 6H5a	9.5	5.5	ر د	- o	~		; 3	5.6	9.7	8.5	8.3	Pliocene (?	ş	5.7	
3. Data notation ie readei	C NH4OA(extr. Sum Bases meq/ 100g					- : :		i							لسا	
Table 3. number note	NH4OAC extr. K meq/ 100g 5B5a 6Q2b	:				0		· ·		0.2		0.2				
Letter/	NH4OAC extr. Na meq/ 100g 5B5a 6P2b	0.2	0.2	0.5	- o	0.1			0.4	0.1	0.1	0		,	0:	
	WH4OAC extr. Mg meq/ 100g 5B5a 6O2d	3.6	2.4	- 0	0 0	0.5			1.7	2.8	က	က			N.	
	NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC NH4OAC extr. Ca extr. Mg extr. Na extr. extr. meq/ meq/ meq/ Sum 100g 100g 100g Bases 5B5a 5B5a 5B5a meq/ 6N2e 6O2d 6P2b 100g	5.2	3.7	5.9	U 4	1.4			3,4	4.6	5.2	5.1.			ა დ	
	ratio/ exclay 15 r bar 8D1 (0.58	0.54	0.78	4-				0.53	0.52	0.52	0.5		,	0.47	
	horiz. cli top (cm)	-1581	-1607	-1631	-1686	-1716			-1746	-1756	-1783	-1810			-1851	

	Letter/n	Table 3. Data from Phillips Bayo Letter/number notation are codes used by The reader is referred to Soi Where	from Phillips Bayou quarry cut-face, south end of Crowleys Ridge, Southeastern Arkansas are codes used by the National Soil Survey Laboratory in Lincoln, NB for analytical procedures is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	eys Ridge, Southeastern Arkans in Lincoln, NB for analytical pro escriptions of these methods. was run.	as cedures.		
horiz top (cm)	air dry:oven dry	fs (0.1-0.25mm) mineralogy (optical) grain count in pct 7B1a	csi (0.02-0.05mm) mineralogy (optical) grain count in pct 7B1a	total clay (<.002mm) mineralogy x-ray diffraction 7A2i	elemental AI2O3 pct of <.002mm	elemental elemental elemental AI2O3 Fe2O3 K20 pct of pct of pct of <.002mm <.002mm	Hemental K20 pct of :.002mm
-359	1.012		QZ53 FK27 FP7 OW6 AM3 OP2 MS1 PR1 Mltr FEtr GNtr ZRtr POtr BTtr TMtr	MT 3KK 3MI 2VR 2QZ 1	6	10.3	7.5
-415 -454 -493	· · · · · · · · · · · · · · · · · · ·		QZ59 FK29 OW5 AM4 FP3 PR3 MI1 OP1 MStr TMtr ZRtr CLtr GStr FCtr FEtr GNtr BTtr	MT 3KK 3VR 2MI 2MM 1 QZ 1		. 10.3	1.5
-532	1.012		QZ55 FK32 OW3 OP3 FP3 AM2 PR1 MS1 ZRIr BTIr MIIr GNIr CLIr TMIr FWIr	MT 3KK 3VR 2MI 2MM 1 QZ 1	2	6.6	1.5
-594			QZ62 FK23 OW6 FP4 MS1 OP1 AM1 PR1 FWtr Mitr BTtr GNtr POtr GStr TMtr FCtr ZRtr	MT 3KK 3MI 2VR 2QZ 1GE 1	23	10.7	4.
c c			Loveland Loess				
-656 -656 -680	1.018		anima annama sipamana	KK 3MT 2MI 2GE 2VR 1HE 1QZ 1	58	-	1.2
-703 -732 -761	1.017					· .	· : :
962-	**** *** * * * * * * * * * * * * * * * *		QZ59 FK21 OW9 FP4 AM2 MS2 OP1 PR1 MII'r FEI'r ZRI'r BTI'r TMI'r				:
-820	1.016		GStr QZ64 FK22 FP7 MS1 OP1 BT1 MI1 FE1 PR1 AMIr TMIr GStr ZRIr CDIr FCtr	KK 3VR 2MT 2MI 2GE 2QZ 1 KK 3VR 2MT 2MI 1QZ 1	24 5	10.7	1 0.9
-877		:					

horiz. top d (cm)	air dry:oven dry	fs (0.1-0.25mm) mineralogy (optical) grain count in pct 7B1a	csi (0.02-0.05mm) mineralogy (optical) grain count in pct 7B1a	total clay (<.002mm) mineralogy x-ray diffraction 7A2i	<u> </u>	<u> </u>	elemental K20 pct of
	1 013					ဋ	7C3
			QZ55 FK29 OW9 FP3 OP2 AM1 BT1 MStr GStr Mltr TMtr FCtr ZRtr GNtr			:	
-977	1.013		FEIr	MT 3MI 2KK 2GE 1QZ 1	26	=	1.3
-1039	1.012		QZ54 FK28 FP7 OP3 OW3 AM2 FE1		L		
	1 009			MI 2KK 2VB 2MT 1GF 1	17.	11 4	1.3
-1099	1.009						•
-1128	1.011					:	
			QZ56 FK31 FP3 OW3 AM2 OP1 PR1 FE1 MIt MStr ZRtr BTtr FCtr TMtr			,	
-1182	1.011.		GStr	MT 3MI 2VR 2KK 2MM 1		o	- 4.
			QZ58 FK31 FP4 OW2 OP2 PR1 ZR1				
-1236	1.012		AMIL MST MILL FEIT GST CLIT TMT MT 3KK 2MI 2VH 2MM 1QZ	MT 3KK 2MI 2VH 2MM 1QZ 1	20	9. 9.	m. -
-1295	1.012		QZ54 FK25 OW9 FP6 OP2 PR1 AM1 Cl 1 Milt MStr 28tr BTr GStr TMtr		<u>.</u>		
-1325	1.013		CDtr	MT 3VR 2KK 2MI 2QZ 1	19	9.5	1.2
355	1.012	à			a ne	, ,	
			Clowleys hidge Loess			1	
			Q256 FK26 OW7 FP5 AM3 OP2 MS1 MI1 PRtr FEtr CLtr BTtr CDtr				
-1386	1.012		FCtr GNtr ZRtr	MT 3VR 2MI 2KK 2QZ 1	16	11.3	1.5
-1423	1.011	:					
-1459	1.011		i			•	•
-1496	1.01			MI 3VH ZMI ZKK ZGE 10Z 1	<u>. </u>	7	4.
1554	600.					:	

		The reader is referred to Soil Survey Staff (1992) for complete descriptions of these methods. Where data elements are blank, no analysis was run.	no son survey stan (1992) for complete description Where data elements are blank, no analysis was run.				
horiz.	air dry:oven dry	fs (0.1-0.25mm) mineralogy (optical) grain count in pct 7B1a	csi (0.02-0.05mm) mineralogy (optical) grain count in pct 7B1a	total clay (<.002mm) mineralogy x-ray diffraction 7A2i	elemental AI2O3 pct of <.002mm	elemental elemental elemental AI2O3 Fe2O3 K20 pct of pct of pct of <.002mm <.002mm	elemental K20 pct of <.002mm
-1581	1.008	:		KK 3MT 2VR 2MI 2QZ 1	17	6.0	1.3
-1631		.005 .004 QZ77 FK11 OW8 FP3 QI1 FC1 FEIT	. :	VR 3KK 3MI 2VM 1	4	7.6	-
-1636 -1686 -1716	1.00.1			KK 2MI 1CL 1QZ 1	3.9	3.3	0.3
			unnamed alluvium		,		
-1746		.004 QZ71 FK12 FP10 QW5 FC1 QI1 FEIT		KK 4MI 2VR 2MT 2QZ 1	21	7.1.	-
-1783		QZ79 FK10 FP8 OW2 CD1 FEtr Qltr FCtr		KK 4MI 2	83	4.6	. 0.7
		Pliocen	Pliocene(?) and (or) Pleistocene sand and gravel	d gravel			
-1851	1.006	QZ67 FP21 FK5 OW4 Q11 FE1 FCtr 1.006 PRtr Mitr	:	KK 3MT 2VR 1MI 1QZ 1	22	7.7	9.0